Publications by authors named "Salvador Gezan"

Crop improvement efforts have exploited new methods for modeling spatial trends using the arrangement of the experimental units in the field. These methods have shown improvement in predicting the genetic potential of evaluated genotypes. However, the use of these tools may be limited by the exposure and accessibility to these products.

View Article and Find Full Text PDF

Background: An important component of the biological activity of pyrethroids, when used in disease vector control, is excito-repellency. In this study, behavioral differences between insecticide susceptible (Orlando) and pyrethroid resistant (Puerto Rican) strains of Aedes aegypti were explored in a round glass arena using fabrics treated with permethrin, etofenprox, deltamethrin, or DDT. Repellency was evaluated across several variables, including the time to first flight (TFF), number of landings (NOL), total flight time (TFT), and maximum surface contact (MSC), all by video analysis.

View Article and Find Full Text PDF

While sparse testing methods have been proposed by researchers to improve the efficiency of genomic selection (GS) in breeding programs, there are several factors that can hinder this. In this research, we evaluated four methods (M1-M4) for sparse testing allocation of lines to environments under multi-environmental trails for genomic prediction of unobserved lines. The sparse testing methods described in this study are applied in a two-stage analysis to build the genomic training and testing sets in a strategy that allows each location or environment to evaluate only a subset of all genotypes rather than all of them.

View Article and Find Full Text PDF

Introduction: Genomic selection is becoming a standard technique in plant breeding and is now being introduced into forest tree breeding. Despite promising results to predict the genetic merit of superior material based on their additive breeding values, many studies and operational programs still neglect non-additive effects and their potential for enhancing genetic gains.

Methods: Using two large comprehensive datasets totaling 4,066 trees from 146 full-sib families of white spruce (Picea glauca (Moench) Voss), we evaluated the effect of the inclusion of dominance on the precision of genetic parameter estimates and on the accuracy of conventional pedigree-based (ABLUP-AD) and genomic-based (GBLUP-AD) models.

View Article and Find Full Text PDF

Norway spruce has a wide natural distribution range, harboring substantial physiological and genetic variation. There are three altitudinal ecotypes described in this species. Each ecotype has been shaped by natural selection and retains morphological and physiological characteristics.

View Article and Find Full Text PDF

Background: Predicting the phenotype from the genotype is one of the major contemporary challenges in biology. This challenge is greater in plants because their development occurs mostly post-embryonically under diurnal and seasonal environmental fluctuations. Most current crop simulation models are physiology-based models capable of capturing environmental fluctuations but cannot adequately capture genotypic effects because they were not constructed within a genetics framework.

View Article and Find Full Text PDF
Article Synopsis
  • Some people smell differently due to their skin bacteria, which makes them more or less appealing to mosquitoes.
  • Researchers studied how women's skin bacteria affect their attractiveness to a type of mosquito known as Anopheles coluzzii.
  • The results showed that those who are more attractive to mosquitoes had different types of skin bacteria compared to those who are less attractive, which could help improve ways to trap or control mosquitoes.
View Article and Find Full Text PDF

Background: A rapid, accurate, non-invasive diagnostic screen is needed to identify people with SARS-CoV-2 infection. We investigated whether organic semi-conducting (OSC) sensors and trained dogs could distinguish between people infected with asymptomatic or mild symptoms, and uninfected individuals, and the impact of screening at ports-of-entry.

Methods: Odour samples were collected from adults, and SARS-CoV-2 infection status confirmed using RT-PCR.

View Article and Find Full Text PDF

Genomic prediction integrates statistical, genomic, and computational tools to improve the estimation of breeding values and increase genetic gain. Due to the broad diversity in mating systems, breeding schemes, propagation methods, and unit of selection, no universal genomic prediction approach can be applied in all crops. In a genome-wide family prediction (GWFP) approach, the family is the basic unit of selection.

View Article and Find Full Text PDF

The University of Florida strawberry ( × ) breeding program has implemented genomic prediction (GP) as a tool for choosing outstanding parents for crosses over the last five seasons. This has allowed the use of some parents 1 year earlier than with traditional methods, thus reducing the duration of the breeding cycle. However, as the number of breeding cycles increases over time, greater knowledge is needed on how multiple cycles can be used in the practical implementation of GP in strawberry breeding.

View Article and Find Full Text PDF

Norway spruce has a broad natural distribution range, which results in a substantial variety of its physiological and genetic variation. There are three distinct altitudinal ecotypes described in this tree species. The physiological optimum of each ecotype may be shifted due to ongoing climate change, especially in traits associated with water demand that might be crucial for adaptation.

View Article and Find Full Text PDF
Article Synopsis
  • Climate change is negatively affecting wheat productivity, with high temperatures particularly harming growth during critical stages like grain filling; this highlights the need for understanding genetic traits that support adaptation to heat stress.
  • A genome-wide association study (GWAS) on elite soft wheat identified 500 significant marker-trait associations, some of which have pleiotropic effects, impacting both physiological traits and grain yield.
  • The study points out that stable genetic loci linked to heat stress adaptation can be used for marker-assisted selection to help breed more resilient wheat varieties.
View Article and Find Full Text PDF

In this study, newly identified small molecules were examined for efficacy against 'Candidatus Liberibacter asiaticus' in commercial groves of sweet orange (Citrus sinensis) and white grapefruit (Citrus paradisi) trees. We used benzbromarone and/or tolfenamic acid delivered by trunk injection. We evaluated safety and efficacy parameters by performing RNAseq of the citrus host responses, 16S rRNA gene sequencing to characterize citrus-associated microbial communities during treatment, and qRT-PCR as an indirect determination of 'Ca.

View Article and Find Full Text PDF

Genomic prediction (GP) is the procedure whereby the genetic merits of untested candidates are predicted using genome wide marker information. Although numerous examples of GP exist in plants and animals, applications to polyploid organisms are still scarce, partly due to limited genome resources and the complexity of this system. Deep learning (DL) techniques comprise a heterogeneous collection of machine learning algorithms that have excelled at many prediction tasks.

View Article and Find Full Text PDF

Moderate heat stress accompanied by short episodes of extreme heat during the post-anthesis stage is common in most US wheat growing areas and causes substantial yield losses. Sink strength (grain number) is a key yield limiting factor in modern wheat varieties. Increasing spike fertility (SF) and improving the partitioning of assimilates can optimize sink strength which is essential to improve wheat yield potential under a hot and humid environment.

View Article and Find Full Text PDF

Little evidence has been presented on the usefulness of sticky traps for monitoring bed bugs, . We examined how the surface roughness around the adhesive of a sticky trap affects both bed bug behavior and adhesive entrapment. In the first assay, bed bugs were placed onto acetate paper discs with different roughness averages (R).

View Article and Find Full Text PDF

Roots have been omitted from previous domestication analyses owing mostly to their subterranean nature. We hypothesized that domestication-associated changes in common bean () roots were due to direct selection for some aboveground traits that also affect roots, and to indirect selection of root traits that improved aboveground plant performance. To test this hypothesis, we compared the root traits of wild and domesticated accessions and performed a multistep quantitative trait locus (QTL) analysis of an intra-Andean recombinant inbred family derived from a landrace and a wild accession.

View Article and Find Full Text PDF

Metabolic syndrome (MetS) is the underlying cause of some devastating diseases, including type 2 diabetes and cardiovascular disease. These diseases have been associated with over-activation of the mechanistic Target of Rapamycin (mTOR) pathway. This study utilizes a high fat diet (HFD) to induce MetS and to dissect the effects of a beneficial bacterium, N6.

View Article and Find Full Text PDF

Genome-wide association studies (GWAS) in plants typically suffer from limited statistical power. An alternative to the logistical and cost challenge of increasing sample sizes is to gain power by meta-analysis using information from independent studies. We carried out GWAS for growth traits with six single-marker models and regional heritability mapping (RHM) in four Eucalyptus breeding populations independently and by Joint-GWAS, using gene and segment-based models, with data for 3373 individuals genotyped with a communal EUChip60KSNP platform.

View Article and Find Full Text PDF

A comprehensive understanding of the genetic basis of target traits in any crop is critical to design breeding strategies for the development and release of new improved varieties. In this study, 34 cacao families were evaluated for vigor and yield related traits over the course of 6 years in Costa Rica. Linear mixed models provided the variance components for the partitioning of additive and non-additive effects.

View Article and Find Full Text PDF

Background: Mosquito larvicides provide a source-reduction strategy to diminish adult females that bite and potentially spread pathogens. Demands are mounting for new and innovative effective biorational larvicides, due to the development of resistance to some currently utilized mosquito larvicides, undesirable non-target effects, and US Environmental Protection Agency (EPA) restrictions. Methionine is a human nutrient essential amino acid that unexpectedly has been shown to be a valuable safe pest management tool against select insect pests that possess alkaline gut physiology.

View Article and Find Full Text PDF

Cacao () is a globally important crop, and its yield is severely restricted by disease. Two of the most damaging diseases, witches' broom disease (WBD) and frosty pod rot disease (FPRD), are caused by a pair of related fungi: and , respectively. Resistant cultivars are the most effective long-term strategy to address diseases, but efficiently generating resistant and productive new cultivars will require robust methods for screening germplasm before field testing.

View Article and Find Full Text PDF

Breeding for drought tolerance is a challenging task that requires costly, extensive, and precise phenotyping. Genomic selection (GS) can be used to maximize selection efficiency and the genetic gains in maize (Zea mays L.) breeding programs for drought tolerance.

View Article and Find Full Text PDF

Breeding programs of cacao ( L.) trees share the many challenges of breeding long-living perennial crops, and genetic progress is further constrained by both the limited understanding of the inheritance of complex traits and the prevalence of technical issues, such as mislabeled individuals (off-types). To better understand the genetic architecture of cacao, in this study, 13 years of phenotypic data collected from four progeny trials in Bahia, Brazil were analyzed jointly in a multisite analysis.

View Article and Find Full Text PDF

The common bean is a tropical facultative short-day legume that is now grown in tropical and temperate zones. This observation underscores how domestication and modern breeding can change the adaptive phenology of a species. A key adaptive trait is the optimal timing of the transition from the vegetative to the reproductive stage.

View Article and Find Full Text PDF