Publications by authors named "Salvador Eslava"

This study examines the kinetic origins of the temperature dependence of photoelectrochemical water oxidation on nanostructured titania photoanodes. We observe that the photocurrent is enhanced at 50 °C relative to 20 °C, with this enhancement being most pronounced (by up to 70%) at low anodic potentials (<+0.6 V vs RHE).

View Article and Find Full Text PDF

Photocatalytic CO reduction plays a crucial role in advancing solar fuels, and enhancing the efficiency of the chosen photocatalysts is essential for sustainable energy production. This study demonstrates advancements in the performance of g-CN as a photocatalyst achieved through surface modifications such as exfoliation to increase surface area and surface oxidation for improved charge separation. We also introduce reduced graphene oxide (rGO) in various ratios to both bulk and exfoliated g-CN, which effectively mitigates charge recombination and establishes an optimal ratio for enhanced efficiency.

View Article and Find Full Text PDF

Tin-lead (Sn-Pb) perovskite solar cells (PSCs) have gained interest as candidates for the bottom cell of all-perovskite tandem solar cells due to their broad absorption of the solar spectrum. A notable challenge arises from the prevalent use of the hole transport layer, PEDOT:PSS, known for its inherently high doping level. This high doping level can lead to interfacial recombination, imposing a significant limitation on efficiency.

View Article and Find Full Text PDF

Halide perovskites exhibit exceptional optoelectronic properties for photoelectrochemical production of solar fuels and chemicals but their instability in aqueous electrolytes hampers their application. Here we present ultrastable perovskite CsPbBr-based photoanodes achieved with both multifunctional glassy carbon and boron-doped diamond sheets coated with Ni nanopyramids and NiFeOOH. These perovskite photoanodes achieve record operational stability in aqueous electrolytes, preserving 95% of their initial photocurrent density for 168 h of continuous operation with the glassy carbon sheets and 97% for 210 h with the boron-doped diamond sheets, due to the excellent mechanical and chemical stability of glassy carbon, boron-doped diamond, and nickel metal.

View Article and Find Full Text PDF

CuTeO (CTO) has been synthesized by hydrothermal synthesis applying different pH values without any template or a calcination step to control the crystalline phase and the morphology of nanoparticles. The physicochemical properties characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, N adsorption, X-ray photoelectron spectroscopy, and diffuse reflectance ultraviolet-visible (DRUV-vis) spectroscopy techniques revealed that the pH values significantly influence the crystal growth. In acidic media (pH = 2), crystal growth has not been achieved.

View Article and Find Full Text PDF

Lead-free halide perovskite derivative CsBiBr has recently been found to possess optoelectronic properties suitable for photocatalytic CO reduction reactions to CO. However, further work needs to be performed to boost charge separation for improving the overall efficiency of the photocatalyst. This report demonstrates the synthesis of a hybrid inorganic/organic heterojunction between CsBiBr and g-CN at different ratios, achieved by growing CsBiBr crystals on the surface of g-CN using a straightforward antisolvent crystallization method.

View Article and Find Full Text PDF

CO photocatalytic conversion into value-added fuels through solar energy is a promising way of storing renewable energy while simultaneously reducing the concentration of CO in the atmosphere. Lead-based halide perovskites have recently shown great potential in various applications such as solar cells, optoelectronics, and photocatalysis. Even though they show high performance, the high toxicity of Pb along with poor stability under ambient conditions restrains the application of these materials in photocatalysis.

View Article and Find Full Text PDF

Achieving highly performant photoanodes for oxygen evolution is key to developing photoelectrochemical devices for solar water splitting. In this work, BiVO photoanodes are enhanced with a series of core-shell structured bimetallic nickel-cobalt phosphides (MPs), and key insights into the role of co-catalysts are provided. The best BiVO /Ni Co P and BiVO /Ni Co P photoanodes achieve a 3.

View Article and Find Full Text PDF

The application of halide perovskites in the photoelectrochemical generation of solar fuels and feedstocks is hindered by the instability of perovskites in aqueous electrolytes and the use of expensive electrode and catalyst materials, particularly in photoanodes driving kinetically slow water oxidation. Here, solely earth-abundant materials are incorporated to fabricate a CsPbBr -based photoanode that reaches a low onset potential of +0.4 V and 8 mA cm photocurrent density at +1.

View Article and Find Full Text PDF

Polarons exist when charges are injected into organic semiconductors due to their strong coupling with the lattice phonons, significantly affecting electronic charge-transport properties. Understanding the formation and (de)localization of polarons is therefore critical for further developing organic semiconductors as a future electronics platform. However, there are very few studies reported in this area.

View Article and Find Full Text PDF

Four solution-processable, linear conjugated polymers of intrinsic porosity are synthesised and tested for gas phase carbon dioxide photoreduction. The polymers' photoreduction efficiency is investigated as a function of their porosity, optical properties, energy levels and photoluminescence. All polymers successfully form carbon monoxide as the main product, without the addition of metal co-catalysts.

View Article and Find Full Text PDF

A growing number of research articles have been published on the use of halide perovskite materials for photocatalytic reactions. These articles extend these materials' great success from solar cells to photocatalytic technologies such as hydrogen production, CO reduction, dye degradation, and organic synthesis. In the present review article, we first describe the background theory of photocatalysis, followed by a description on the properties of halide perovskites and their development for photocatalysis.

View Article and Find Full Text PDF

Deep eutectic solvents (DES) and their hydrated mixtures are used for solvothermal routes towards greener functional nanomaterials. Here we present the first static structural and in situ studies of the formation of iron oxide (hematite) nanoparticles in a DES of choline chloride : urea where xurea = 0.67 (aka.

View Article and Find Full Text PDF

The design of robust, high-performance photocatalysts is key for the success of solar fuel production by CO conversion. In this study, hypercrosslinked polymer (HCP) photocatalysts have been developed for the selective reduction of CO to CO, combining excellent CO sorption capacities, good general stabilities, and low production costs. HCPs are active photocatalysts in the visible light range, significantly outperforming the benchmark material, TiO P25, using only sacrificial H O.

View Article and Find Full Text PDF

Ceria particles play a key role in catalytic applications such as automotive three-way catalytic systems in which toxic CO and NO are oxidized and reduced to safe CO and N , respectively. In this work, we explore the incorporation of Cu and Cr metals as dopants in the crystal structure of ceria nanorods prepared by a single-step hydrothermal synthesis. XRD, Raman and XPS confirm the incorporation of Cu and Cr in the ceria crystal lattices, offering ceria nanorods with a higher concentration of oxygen vacancies.

View Article and Find Full Text PDF

TiO inverse opal (TIO) structures were prepared by the conventional wet chemical method, resulting in well-formed structures for photocatalytic activity. The obtained structures were functionalized with liquid flame spray-deposited silver nanoparticles (AgNPs). The nanocomposites of TIO and AgNPs were extensively characterized by various spectroscopies such as UV, Raman, X-ray diffraction, energy-dispersive spectroscopy, and X-ray photoelectron spectroscopy combined with microscopic methods such as scanning electron microscopy, transmission electron microscopy (TEM), and high-resolution TEM.

View Article and Find Full Text PDF

Metal-halide perovskites have been widely investigated in the photovoltaic sector due to their promising optoelectronic properties and inexpensive fabrication techniques based on solution processing. Here we report the development of inorganic CsPbBr-based photoanodes for direct photoelectrochemical oxygen evolution from aqueous electrolytes. We use a commercial thermal graphite sheet and a mesoporous carbon scaffold to encapsulate CsPbBr as an inexpensive and efficient protection strategy.

View Article and Find Full Text PDF

A well-dispersed phase of exfoliated graphene oxide (GO) nanosheets was initially prepared in water. This was concentrated by centrifugation and was mixed with a liquid epoxy resin. The remaining water was removed by evaporation, leaving a GO dispersion in epoxy resin.

View Article and Find Full Text PDF

Strong and tough natural composites such as bone, silk or nacre are often built from stiff blocks bound together using thin interfacial soft layers that can also provide sacrificial bonds for self-repair. Here we show that it is possible exploit this design in order to create self-healing structural composites by using thin supramolecular polymer interfaces between ceramic blocks. We have built model brick-and-mortar structures with ceramic contents above 95 vol% that exhibit strengths of the order of MPa (three orders of magnitude higher than the interfacial polymer) and fracture energies that are two orders of magnitude higher than those of the glass bricks.

View Article and Find Full Text PDF

Graphene has excellent mechanical, thermal, optical and electrical properties and this has made it a prime target for use as a filler material in the development of multifunctional polymeric composites. However, several challenges need to be overcome to take full advantage of the aforementioned properties of graphene. These include achieving good dispersion and interfacial properties between the graphene filler and the polymeric matrix.

View Article and Find Full Text PDF

Arthritis, bone fracture, bone tumors and other musculoskeletal diseases affect millions of people across the world. Nowadays, inert and bioactive ceramics are used as bone substitutes or for bone regeneration. Their bioactivity is very much dictated by the way proteins adsorb on their surface.

View Article and Find Full Text PDF

Responsive graphene oxide sheets form non-covalent networks with optimum rheological properties for 3D printing. These networks have shear thinning behavior and sufficiently high elastic shear modulus (G') to build self-supporting 3D structures by direct write assembly. Drying and thermal reduction leads to ultra-light graphene-only structures with restored conductivity and elastomeric behavior.

View Article and Find Full Text PDF

The widespread technological introduction of graphene beyond electronics rests on our ability to assemble this two-dimensional building block into three-dimensional structures for practical devices. To achieve this goal we need fabrication approaches that are able to provide an accurate control of chemistry and architecture from nano to macroscopic levels. Here, we describe a versatile technique to build ultralight (density ≥1 mg cm(-3)) cellular networks based on the use of soft templates and the controlled segregation of chemically modified graphene to liquid interfaces.

View Article and Find Full Text PDF

This paper introduces our approach to modeling the mechanical behavior of cellular ceramics, through the example of calcium phosphate scaffolds made by robocasting for bone-tissue engineering. The Weibull theory is used to deal with the scaffolds' constitutive rods statistical failure, and the Sanchez-Palencia theory of periodic homogenization is used to link the rod- and scaffold-scales. Uniaxial compression of scaffolds and three-point bending of rods were performed to calibrate and validate the model.

View Article and Find Full Text PDF

Here we investigate the synthesis of high-nuclearity heterometallic titanium oxo-alkoxy cages using the reactions of metal chlorides with [Ti(OEt)(4)] or the pre-formed homometallic titanium-oxo-alkoxy cage [Ti(7)O(4)(OEt)(20)] (A). The octanuclear Ti(7)Co(II) cage [Ti(7)CoO(5)(OEt)(19)Cl] (1) (whose low-yielding synthesis we reported earlier) can be made in better yield, reproducibly by the reaction of a mixture of heptanuclear [Ti(7)O(4)(OEt)(20)] (A) and [KOEt] with [Co(II)Cl(2)] in toluene. A alone reacts with [Co(II)Cl(2)] and [Fe(II)Cl(2)] to form [Ti(7)Co(II)O(5)(OEt)(18)Cl(2)] (2) and [Ti(7)Fe(II)O(5)(OEt)(18)Cl(2)] (3), respectively.

View Article and Find Full Text PDF