The LIFE SURFING Project was carried out at the Bailin Landfill in Sabiñánigo, Spain (2020-2022), applying Surfactant Enhanced Aquifer Remediation (SEAR) and In Situ Chemical Oxidation (S-ISCO) in a 60-meter test cell beneath the old landfill, to remediate a contaminated aquifer with dense non-aqueous phase liquid (DNAPL) from nearby lindane production. The project overcame traditional extraction limitations, successfully preventing groundwater pollution from reaching the river. In spring 2022, two SEAR interventions involved the injection of 9.
View Article and Find Full Text PDFThis work studies the remediation of groundwater saturated with dense non-aqueous phase liquid (DNAPL) from lindane production wastes by electrochemical oxidation. DNAPL-saturated groundwater contains up to 26 chlorinated organic compounds (COCs), including different isomers of hexachlorocyclohexane (HCH). To do this, polluted groundwater was electrolysed using boron-doped diamond (BDD) and stainless steel (SS) as anode and cathode, respectively, and the influence of the current density on COCs removal was evaluated in the range from 5 to 50 mA cm.
View Article and Find Full Text PDFThe oxidation of hexachlorocyclohexane isomers in the aqueous phase (Milli-Q and groundwater) was studied using persulfate activated by ferrioxalate and solar light at circumneutral pH. The experiments were conducted in a solar simulator reactor with local radiation fluxes q= 1.12·10 E cms and in compound parabolic collectors with solar light (q≈10 E cms) for 390 min.
View Article and Find Full Text PDFIn this work, data obtained from the University Hospital Complex of Albacete (Spain) were selected as a case study to carry out the disinfection experiments. To do this, different configurations of electrochemical reactors were tested for the disinfection of complex urines. Results showed that 4-6 logs bacterial removal were achieved for every bacterium tested when working with a microfluidic flow-through reactor after 180 min (0.
View Article and Find Full Text PDFThe inefficiency of conventional biological processes to remove pharmaceutical compounds (PhCs) in wastewater is leading to their accumulation in aquatic environments. These compounds are characterized by high toxicity, high antibiotic activity and low biodegradability, and their presence is causing serious environmental risks. Because much of the PhCs consumed by humans are excreted in the urine, hospital effluents have been considered one of the main routes of entry of PhCs into the environment.
View Article and Find Full Text PDFThe occurrence of antibiotic-resistant bacteria (ARB) in water bodies poses a sanitary and environmental risk. These ARB and other mobile genetic elements can be easily spread from hospital facilities, the point in which, for sure, they are more concentrated. For this reason, novel clean and efficient technologies are being developed for allowing to remove these ARB and other mobile genetic elements before their uncontrolled spread.
View Article and Find Full Text PDFThis work presents a disruptive approach to promote highly-efficient photo-Fenton process at neutral pH under continuous mode operation. The system consists of a tube-in-tube membrane reactor designed for continuous-flow titration of low iron doses to the annular reaction zone (ARZ). A concentrated acidic ferrous ion (Fe) solution is fed by the lumen-side of the membrane, permeating through the membrane pores (inside-out mode), being dosed and uniformly delivered to the membrane shell-side.
View Article and Find Full Text PDFThis work focuses on the removal of antibiotic-resistant bacteria (ARB) contained in hospital urines by UV disinfection enhanced by electrochemical oxidation to overcome the limitations of both single processes in the disinfection of this type of effluents. UV disinfection, electrolysis, and photoelectrolysis of synthetic hospital urine intensified with K. pneumoniae were studied.
View Article and Find Full Text PDFThis work focuses on improving the biodegradability of hospital urines polluted with antibiotics by electrochemical advanced oxidation processes (EAOPs). To do this, chloramphenicol (CAP) has been used as a model compound and the influence of anodic material (Boron Doped Diamond (BDD) and Mixed Metal Oxide (MMO)) and current density (1.25-5 mA cm) on the toxicity and the biodegradability was evaluated.
View Article and Find Full Text PDFThis work focuses on the treatment of synthetic wastewater polluted with dye Procion Red MX-5B by different Electrochemical Advanced Oxidation Processes (EAOP) based on diamond anodes. The influence of the current density and the supporting electrolyte has been studied on dye removal and total mineralization of the organic matter. Results show that electrolysis with diamond electrodes is a suitable technology for an efficient degradation of dye.
View Article and Find Full Text PDFIn this work, synthetic wastewater polluted with ionic liquid 1-butyl-3-methylimidazolium (Bmim) bis(trifluoromethanesulfonyl)imide (NTf) undergoes four electrolytic treatments with diamond anodes (bare electrolysis, electrolysis enhanced with peroxosulfate promoters, irradiated with UV light and with US) and results obtained were compared with those obtained with the application of Catalytic Wet Peroxide Oxidation (CWPO). Despite its complex heterocyclic structure, Bmim cation is successfully depleted with the five technologies tested, being transformed into intermediates that eventually can be mineralized. Photoelectrolysis attained the lowest concentration of intermediates, while CWPO is the technology less efficient in their degradation.
View Article and Find Full Text PDFIn this work, sono- and photoelectrolysis of synthetic wastewaters polluted with the ionic liquids 1-Butyl-3-methylimidazolium acetate (BmimAc) and chloride (BmimCl) were investigated with diamond anodes. The results were compared to those attained by enhancing bare electrolysis with irradiation by UV light or with the application of high-frequency ultrasound (US). Despite its complex heterocyclic structure, the Bmim cation was successfully depleted with the three technologies that were tested and was mainly transformed into four different organic intermediates, an inorganic nitrogen species and carbon dioxide.
View Article and Find Full Text PDFHospital effluents are a major source for the occurrence of pharmaceuticals in the environment. In this work, the treatment of synthetic urine polluted with chloramphenicol is studied by using three different conductive-diamond electrochemical oxidation technologies: electrolysis (single electrolysis), photoelectrolysis and high-frequency ultrasound sonoelectrolysis. These technologies were evaluated at 10 and 100 mA cm.
View Article and Find Full Text PDFThis work focuses on the disinfection actual urban wastewater by the combination of ultrasound (US) irradiation and electrodisinfection with Dimensionally Stable Anodes (DSA). First, the inactivation of Escherichia coli (E. coli) during the sonochemical disinfection was studied at increasing ultrasound power.
View Article and Find Full Text PDFThis work focuses on the scale-up of electrochemical and photoelectrochemical oxidation processes with diamond anodes for the removal of organic pollutants and disinfection of treated urban wastewater, two of the most important parameters for the reclaiming of wastewater. The removal of organics was studied with actual biologically treated urban wastewater intensified with 100 mg dm(-3) of caffeine, added as a trace organic pollutant. The disinfection was also studied with biologically treated urban wastewater, and Escherichia coli was used to monitor the efficiency of the process.
View Article and Find Full Text PDFThis paper analyzes the advantages and drawbacks of the combination of UV irradiation with electrolysis with the aim to give insight about the feasibility of the application of this technology for the reclaiming of conventionally-treated wastewater. The oxidation of synthetic solutions containing five selected model complex pollutants has been compared, showing that UV irradiation improves the results of electrolysis for progesterone, metoprolol and caffeine and deteriorates the performance for the degradation of sulfamethoxazole and dimethyl-phthalate. Differences observed becomes lower when mineralization is compared showing that the effects of UV irradiation are diluted when a mixture of species is oxidized.
View Article and Find Full Text PDFIn the present work, the disinfection of actual effluents from a municipal wastewater treatment plant (WWTP) by a conductive diamond sono-electrochemical process was assessed. First, efficiency of single electrodisinfection process with diamond anodes (without the contribution of ultrasounds) was studied, finding that the total disinfection can be attained at current charges applied below 0.02kAhm(-3).
View Article and Find Full Text PDFThis work presents an integrated electrodisinfection/electrocoagulation (ED-EC) process for urban wastewater reuse that employs iron bipolar electrodes. Boron doped diamond (BDD) was used as the anode and stainless steel (SS) as the cathode. A perforated iron plate was introduced between the anode and cathode to function as a bipolar electrode.
View Article and Find Full Text PDFIn this work, a novel integrated electrochemical process for urban wastewater regeneration is described. The electrochemical cell consists in a Boron Doped Diamond (BDD) or a Dimensionally Stable Anode (DSA) as anode, a Stainless Steel (SS) as cathode and a perforated aluminum plate, which behaves as bipolar electrode, between anode and cathode. Thus, in this cell, it is possible to carry out, at the same time, two different electrochemical processes: electrodisinfection (ED) and electrocoagulation (EC).
View Article and Find Full Text PDF