Publications by authors named "Salvador Bosch"

Loop-Mediated Isothermal Amplification (LAMP) is a useful technique for detecting infectious microorganisms in human fluids since it performs similarly to conventional PCR, the results are obtained faster and no thermocyclers or complex devices are required. Since only two isothermal blocks (95 °C to lyse cells and 65 °C for DNA amplification) are needed, LAMP is particularly suited for applications in Low- and Middle-Income Countries (LMICs). To validate such assumption, we first designed and tested Arduino-controlled LAMP thermoblocks to process a considerable number of samples simultaneously with a low-energy consumption to enable routine use under worst-case conditions (no main power source and low ambient temperatures).

View Article and Find Full Text PDF

This study investigates the polarimetric properties of skin, skeletal muscle, connective tissue, and fat using Mueller matrix imaging. It aims to compare the polarimetric characteristics of these tissues and explore how they evolve with wavelength. Additionally, the temporal evolution of certain tissues during meat aging is studied, providing insights into the dynamic behavior of polarimetric properties over time.

View Article and Find Full Text PDF

A complete formulation of the electromagnetic problem corresponding to the light incidence from a transparent to an absorbing medium (isotropic materials) is developed. According to the standard separation in and polarization cases, we explicitly obtain all the relevant formulas that relate the polarization and Poynting vectors of the reflected and transmitted beams with the incident ones. Overall, the procedure is compact since it is short and complete.

View Article and Find Full Text PDF

In this paper, we introduce the Mueller matrix imaging concepts for 3D Integral Imaging Polarimetry. The Mueller matrix of a complex scene is measured and estimated with 3D integral imaging. This information can be used to analyze the complex polarimetric behavior of any 3D scene.

View Article and Find Full Text PDF

The optical activity of fabricated metallic nanostructures is investigated by complete polarimetry. While lattices decorated with nanoscale gammadia etched in thin metallic films have been described as two dimensional, planar nanostructures, they are better described as quasi-planar structures with some three dimensional character. We find that the optical activity of these structures arises not only from the dissymmetric backing by a substrate but, more importantly, from the selective rounding of the nanostructure edges.

View Article and Find Full Text PDF

Control of the polarization distribution of light allows tailoring the electromagnetic response of plasmonic particles. By rigorously extending the generalized multiparticle Mie theory, we show that focused cylindrical vector beams (CVB) can be used to efficiently excite dark plasmon modes in nanoparticle clusters. In addition to the small radiative damping and large field enhancement associated to dark modes, excitation with CVB can give place to unusual phenomenology like the formation of electromagnetic cold spots and the generation of Fano resonances in highly symmetric clusters.

View Article and Find Full Text PDF

We present a procedure for the optical characterization of thin-film stacks from spectrophotometric data. The procedure overcomes the intrinsic limitations arising in the numerical determination of many parameters from reflectance or transmittance spectra measurements. The key point is to use all the information available from the manufacturing process in a single global optimization process.

View Article and Find Full Text PDF

On the basis of the intensity-moment formalism, certain analytical relationships are obtained for both the angular domain and the size of a transverse region of the beam that ensure a power content of at least 75% of the total power. As an illustrative application, the analytical results are compared with the exact values (numerically computed) of the amplitude of a lowest-order Gaussian beam diffracted by slits.

View Article and Find Full Text PDF

Single layers of MgF2 and LaF3 were deposited upon superpolished fused-silica and CaF2 substrates by ion-beam sputtering (IBS) as well as by boat and electron beam (e-beam) evaporation and were characterized by a variety of complementary analytical techniques. Besides undergoing photometric and ellipsometric inspection, the samples were investigated at 193 and 633 nm by an optical scatter measurement facility. The structural properties were assessed with atomic-force microscopy, x-ray diffraction, TEM techniques that involved conventional thinning methods for the layers.

View Article and Find Full Text PDF