Genomic prediction (GP) is the procedure whereby the genetic merits of untested candidates are predicted using genome wide marker information. Although numerous examples of GP exist in plants and animals, applications to polyploid organisms are still scarce, partly due to limited genome resources and the complexity of this system. Deep learning (DL) techniques comprise a heterogeneous collection of machine learning algorithms that have excelled at many prediction tasks.
View Article and Find Full Text PDFHeredity (Edinb)
July 2018
Breeding for drought tolerance is a challenging task that requires costly, extensive, and precise phenotyping. Genomic selection (GS) can be used to maximize selection efficiency and the genetic gains in maize (Zea mays L.) breeding programs for drought tolerance.
View Article and Find Full Text PDFGenomic and pedigree-based best linear unbiased prediction methodologies (G-BLUP and P-BLUP) have proven themselves efficient for partitioning the phenotypic variance of complex traits into its components, estimating the individuals' genetic merits, and predicting unobserved (or yet-to-be observed) phenotypes in many species and fields of study. The GenoMatrix software, presented here, is a user-friendly package to facilitate the process of using genome-wide marker data and parentage information for G-BLUP and P-BLUP analyses on complex traits. It provides users with a collection of applications which help them on a set of tasks from performing quality control on data to constructing and manipulating the genomic and pedigree-based relationship matrices and obtaining their inverses.
View Article and Find Full Text PDF