Senescence causes age-related diseases and stress-related injury. Paradoxically, it is also essential for organismal development. Whether senescence contributes to lung development or injury in early life remains unclear.
View Article and Find Full Text PDFAntioxidants (Basel)
October 2022
Heme oxygenase-1 (HO-1) is a rate-limiting enzyme in degrading heme into biliverdin and iron. HO-1 can also enter the nucleus and regulate gene transcription independent of its enzymatic activity. Whether HO-1 can alter gene expression through direct binding to target DNA remains unclear.
View Article and Find Full Text PDFBackground: Bronchopulmonary dysplasia (BPD) is a chronic lung disease in premature infants that may cause long-term lung dysfunction. Accumulating evidence supports the vascular hypothesis of BPD, in which lung endothelial cell dysfunction drives this disease. We recently reported that endothelial carnitine palmitoyltransferase 1a (Cpt1a) is reduced by hyperoxia, and that endothelial cell-specific Cpt1a knockout mice are more susceptible to developing hyperoxia-induced injury than wild type mice.
View Article and Find Full Text PDFVentilatory support, such as supplemental oxygen, used to save premature infants impairs the growth of the pulmonary microvasculature and distal alveoli, leading to bronchopulmonary dysplasia (BPD). Although lung cellular composition changes with exposure to hyperoxia in neonatal mice, most human BPD survivors are weaned off oxygen within the first weeks to months of life, yet they may have persistent lung injury and pulmonary dysfunction as adults. We hypothesized that early-life hyperoxia alters the cellular landscape in later life and predicts long-term lung injury.
View Article and Find Full Text PDFThe transcriptional repressor Rev-erbα is known to down-regulate fatty acid metabolism and gluconeogenesis gene expression. In animal models, disruption of Rev-erbα results in global changes in exercise performance, oxidative capacity, and blood glucose levels. However, the complete extent to which Rev-erbα-mediated transcriptional repression of metabolism impacts cell function remains unknown.
View Article and Find Full Text PDF