Myeloid cell leukemia 1 (Mcl-1) is a key regulator of the intrinsic apoptosis pathway. Overexpression of Mcl-1 is correlated with high tumor grade, poor survival, and both intrinsic and acquired resistance to cancer therapies. Herein, we disclose the structure-guided design of a small molecule Mcl-1 inhibitor, compound , that binds to Mcl-1 with subnanomolar affinity, inhibits growth in cell culture assays, and possesses low clearance in mouse and dog pharmacokinetic (PK) experiments.
View Article and Find Full Text PDFThis letter describes a focused exercise to explore the role of the β-amino carboxamide moiety found in all of the first generation M PAMs and question if the NH group served solely to stabilize an intramolecular hydrogen bond (IMHB) and enforce planarity. To address this issue (and to potentially find a substitute for the β-amino carboxamide that engendered P-gp and contributed to solubility liabilities), we removed the NH, generating des-amino congeners and surveyed other functional groups in the β-position. These modifications led to weak M PAMs with poor DMPK properties.
View Article and Find Full Text PDFWDR5 is a chromatin-regulatory scaffold protein overexpressed in various cancers and a potential epigenetic drug target for the treatment of mixed-lineage leukemia. Here, we describe the discovery of potent and selective WDR5-WIN-site inhibitors using fragment-based methods and structure-based design. NMR-based screening of a large fragment library identified several chemically distinct hit series that bind to the WIN site within WDR5.
View Article and Find Full Text PDFHerein we report the synthesis and characterization of a novel series of N-phenylsulfonyl-1H-pyrrole picolinamides as novel positive allosteric modulators of mGlu4. We detail our work towards finding phenyl replacements for the core scaffold of previously reported phenyl sulfonamides and phenyl sulfone compounds. Our efforts culminated in the identification of N-(1-((3,4-dimethylphenyl)sulfonyl)-1H-pyrrol-3-yl)picolinamide as a potent PAM of mGlu4.
View Article and Find Full Text PDFThe efficacy of positive allosteric modulators (PAMs) of the metabotropic glutamate receptor 4 (mGlu4) in preclinical rodent models of Parkinson's disease has been established by a number of groups. Here, we report an advanced preclinically characterized mGlu4 PAM, N-(3-chloro-4-fluorophenyl)-1H-pyrazolo[4,3-b]pyridin-3-amine (VU0418506). We detail the discovery of VU0418506 starting from a common picolinamide core scaffold and evaluation of a number of amide bioisosteres leading to the novel pyrazolo[4,3-b]pyridine head group.
View Article and Find Full Text PDFHerein we describe the discovery and development of a novel class of M(4) positive allosteric modulators, culminating in the discovery of ML293. ML293 exhibited modest potency at the human M4 receptor (EC(50)=1.3 μM) and excellent efficacy as noted by the 14.
View Article and Find Full Text PDFHerein we report the discovery and SAR of a novel antagonist of metabotropic glutamate receptor 4 (mGlu(4)). The antagonist was discovered via a molecular switch from a closely related mGlu(4) positive allosteric modulator (PAM). This antagonist (VU0448383) displays an IC(50) value of 8.
View Article and Find Full Text PDFTransient receptor potential canonical (TRPC) channels are Ca(2+)-permeable nonselective cation channels implicated in diverse physiological functions, including smooth muscle contractility and synaptic transmission. However, lack of potent selective pharmacological inhibitors for TRPC channels has limited delineation of the roles of these channels in physiological systems. Here we report the identification and characterization of ML204 as a novel, potent, and selective TRPC4 channel inhibitor.
View Article and Find Full Text PDFHerein we report a general synthesis of 1,3-diarylsubstituted indazoles utilizing a two-step Suzuki cross-coupling/deprotection/N-arylation sequence. This procedure proceeds in excellent overall yield starting from the 3-iodo-N-Boc indazole derivative allowing for rapid access to these compounds.
View Article and Find Full Text PDFThe optimization of imidazo[1,2-a]pyridine inhibitors as potent and selective inhibitors of IGF-1R is presented. Further optimization of oral exposure in mice is also discussed. Detailed selectivity, in vitro activity, and in vivo PK profiles of an optimized compound is also highlighted.
View Article and Find Full Text PDFThe discovery and development of a series of thiophenes as potent and selective inhibitors of PLK is described. Identification and characterization of 2, a useful in vitro PLK inhibitor tool compound, is also presented.
View Article and Find Full Text PDFBioorg Med Chem Lett
December 2008
The synthesis and biological activities of imidazo[5,1-f][1,2,4]triazin-2-amines (imidazotriazines) as novel polo-like kinase 1 inhibitors are reported.
View Article and Find Full Text PDF