An increasing number of assay detection technologies are routinely used in small molecule drug discovery and lead optimization. These assays range from solid-phase heterogeneous assays such as enzyme-linked immunosorbent assay and dissociation-enhanced lanthanide fluorescent immunoassay (DELFIA, PerkinElmer Life and Analytical Sciences, Boston, MA) to solution phase, bead-based assays such as electrochemiluminescence assay (BioVeris [Gaithersburg, MD] technology) and amplified luminescent proximity homogeneous assay (AlphaScreen, PerkinElmer Life and Analytical Sciences) to completely solution-based homogeneous assays such as time-resolved fluorescence resonance energy transfer and fluorescence polarization. The aim of this study is to compare these assay technologies and assess the advantages and disadvantages of each in the context of our efforts to develop small molecule antagonists to the melanoma inhibitor of apoptosis protein.
View Article and Find Full Text PDFThe serine protease factor VIIa (FVIIa) in complex with its cellular cofactor tissue factor (TF) initiates the blood coagulation reactions. TF.FVIIa is also implicated in thrombosis-related disorders and constitutes an appealing therapeutic target for treatment of cardiovascular diseases.
View Article and Find Full Text PDFML-IAP (melanoma inhibitor of apoptosis) is a potent anti-apoptotic protein that is strongly up-regulated in melanoma and confers protection against a variety of pro-apoptotic stimuli. The mechanism by which ML-IAP regulates apoptosis is unclear, although weak inhibition of caspases 3 and 9 has been reported. Here, the binding to and inhibition of caspase 9 by the single BIR (baculovirus IAP repeat) domain of ML-IAP has been investigated and found to be significantly less potent than the ubiquitously expressed XIAP (X-linked IAP).
View Article and Find Full Text PDFClostridium botulinum neurotoxins (BoNTs), the most potent toxins known, disrupt neurotransmission through proteolysis of proteins involved in neuroexocytosis. The light chains of BoNTs are unique zinc proteases that have stringent substrate specificity and require exceptionally long substrates. We have determined the crystal structure of the protease domain from BoNT serotype A (BoNT/A).
View Article and Find Full Text PDFMelanoma inhibitor of apoptosis (ML-IAP) is a potent anti-apoptotic protein that is upregulated in a number of melanoma cell lines but not expressed in most normal adult tissues. Overexpression of IAP proteins, such as ML-IAP or the ubiquitously expressed X-chromosome-linked IAP (XIAP), in human cancers has been shown to suppress apoptosis induced by a variety of stimuli. Peptides based on the processed N-terminus of Smac/DIABLO can negate the ability of overexpressed ML-IAP or XIAP to suppress drug-induced apoptosis.
View Article and Find Full Text PDFHepatocyte growth factor activator inhibitor-1 (HAI-1) is an integral membrane protein expressed on epithelial cells and contains two extracellular Kunitz domains (N-terminal KD1 and C-terminal KD2) known to inhibit trypsin-like serine proteases. In tumorigenesis and tissue regeneration, HAI-1 regulates the hepatocyte growth factor (HGF)/c-Met pathway by inhibiting the activity of HGF activator (HGFA) and matriptase, two serine proteases that convert pro-HGF into its biologically active form. By screening a placental cDNA library, we discovered a new splice variant of HAI-1 designated HAI-1B that contains an extra 16 amino acids adjacent to the C terminus of KD1.
View Article and Find Full Text PDFA panel of 22 naïve peptide libraries was constructed in a polyvalent phage display format and sorted against insulin-like growth factor-1 (IGF-1). The libraries were pooled to achieve a total diversity of 4.4 x 10(11).
View Article and Find Full Text PDFInhibitors of apoptosis (IAPs) physically interact with a variety of pro-apoptotic proteins and inhibit apoptosis induced by diverse stimuli. X-linked IAP (X-IAP) is a prototype IAP family member that inhibits several caspases, the effector proteases of apoptosis. The inhibitory activity of X-IAP is regulated by SMAC, a protein that is processed to its active form upon receipt of a death stimulus.
View Article and Find Full Text PDF