Aim: To investigate the evolution of the incretin-like peptide 26RFa in a prospective cohort of women living with obesity with or without type 2 diabetes (T2D) before and after sleeve gastrectomy (SG).
Methods: In this study, a total of 61 women were divided into three groups: women living with severe obesity without T2D (WlwOB group), women living with severe obesity and T2D (WlwOB-T2D group) and lean healthy volunteers (control group). Serum 26RFa concentrations were measured using a 26RFa enzyme-linked immunosorbent assay developed specifically for this study during meal tests before SG, and 30 and 180 days after SG.
Introduction: Immunoglobulins (Ig) reactive with α-melanocyte-stimulating hormone (α-MSH), an anorexigenic neuropeptide, are present in humans and were previously associated with eating disorders. In this longitudinal study involving patients with anorexia nervosa (AN), we determined whether α-MSH in serum is bound to IgG and analyzed long-term dynamics of both α-MSH peptide and α-MSH-reactive Ig in relation to changes in BMI and gut microbiota composition.
Methods: The study included 64 adolescents with a restrictive form of AN, whose serum samples were collected at hospital admission, discharge, and during a 1-year follow-up visit and 41 healthy controls, all females.
Background: Obesity and type 2 diabetes are strongly associated pathologies, currently considered as a worldwide epidemic problem. Understanding the mechanisms that drive the development of these diseases would enable to develop new therapeutic strategies for their prevention and treatment. Particularly, the role of the brain in energy and glucose homeostasis has been studied for 2 decades.
View Article and Find Full Text PDFOxytocin is a neuropeptide produced mainly in the hypothalamus and secreted in the CNS and blood. In the brain, it plays a major role in promoting social interactions. Here we show that in human plasma about 60% of oxytocin is naturally bound to IgG which modulates oxytocin receptor signaling.
View Article and Find Full Text PDF26RFa, also referred to as QRFP, is a hypothalamic neuropeptide mainly known for its role in the regulation of appetite and glucose metabolism. Its possible relevance to emotional regulation is largely unexplored. To address this, in the present exploratory study, we analyzed the plasma concentrations of 26RFa in humans characterized by different levels of anxiety and aggressive behavior.
View Article and Find Full Text PDFThe regulatory peptide 26RFa (QRFP) is involved in the control of glucose homeostasis at the periphery by acting as an incretin, and in the brain by mediating the central antihyperglycemic effect of insulin, indicating the occurrence of a close relationship between 26RFa and insulin in the regulation of glucose metabolism. Here, we investigated the physiological interactions between 26RFa and insulin in two complementary models i.e.
View Article and Find Full Text PDFAims/hypothesis: 26RFa (pyroglutamilated RFamide peptide [QRFP]) is a biologically active peptide that regulates glucose homeostasis by acting as an incretin and by increasing insulin sensitivity at the periphery. 26RFa is also produced by a neuronal population localised in the hypothalamus. In this study we investigated whether 26RFa neurons are involved in the hypothalamic regulation of glucose homeostasis.
View Article and Find Full Text PDFIntroduction: The aim of the study is to investigate whether acute or chronic central administration of the hypothalamic neuropeptide 26RFa may ameliorate the glycemic control of obese/diabetic mice.
Methods: Mice were treated for 4 months with a high-fat (HF) diet and received a single i.c.
BMJ Open Diabetes Res Care
February 2020
Introduction: 26RFa (pyroglutamyl RFamide peptide (QRFP)) is a biologically active peptide that has been found to control feeding behavior by stimulating food intake, and to regulate glucose homeostasis by acting as an incretin. The aim of the present study was thus to investigate the impact of 26RFa gene knockout on the regulation of energy and glucose metabolism.
Research Design And Methods: 26RFa mutant mice were generated by homologous recombination, in which the entire coding region of prepro26RFa was replaced by the iCre sequence.