Publications by authors named "Salome Vilchez Larrea"

Cruzipain (CZP), the major cysteine protease present in , the ethiological agent of Chagas disease, has attracted particular attention as a therapeutic target for the development of targeted covalent inhibitors (TCI). The vast chemical space associated with the enormous molecular diversity feasible to explore by means of modern synthetic approaches allows the design of CZP inhibitors capable of exhibiting not only an efficient enzyme inhibition but also an adequate translation to anti- activity. In this work, a computer-aided design strategy was developed to combinatorially construct and screen large libraries of 1,4-disubstituted 1,2,3-triazole analogues, further identifying a selected set of candidates for advancement towards synthetic and biological activity evaluation stages.

View Article and Find Full Text PDF

In Trypanosoma cruzi DNA is packaged into chromatin by octamers of histone proteins that form nucleosomes. Transcription of protein coding genes in trypanosomes is constitutive producing polycistronic units and gene expression is primarily regulated post-transcriptionally. However, chromatin organization influences DNA dependent processes.

View Article and Find Full Text PDF

Poly (ADP-ribose) polymerase (PARP) is responsible for the synthesis of ADP-ribose polymers, which are involved in a wide range of cellular processes such as preservation of genome integrity, DNA damage signaling and repair, molecular switches between distinct cell death pathways, and cell cycle progression. Previously, we demonstrated that the only PARP present in T. cruzi migrates to the nucleus upon genotoxic stimulus.

View Article and Find Full Text PDF

Chagas disease is a potentially life-threatening protozoan infection affecting around 8 million people, for which only chemotherapies with limited efficacy and severe adverse secondary effects are available. The aetiological agent, Trypanosoma cruzi, displays varied cell invading tactics and triggers different host cell signals, including the Wnt/β-catenin pathway. Poly(ADP-ribose) (PAR) can be synthetized by certain members of the poly(ADP-ribose) polymerase (PARP) family: PARP-1/-2 and Tankyrases-1/2 (TNKS).

View Article and Find Full Text PDF

Background: (AJ) are involved in cancer, infections and neurodegeneration. Still, their composition has not been completely disclosed. Poly(ADP-ribose) polymerases (PARPs) catalyze the synthesis of poly(ADP-ribose) (PAR) as a posttranslational modification.

View Article and Find Full Text PDF

Trypanosoma cruzi, the etiological agent of Chagas disease, has a digenetic life cycle. In its passage from the insect vector to the mammalian host, and vice versa, it must be prepared to cope with abrupt changes in environmental conditions, such as carbon source, pH, temperature and osmolarity, in order to survive. Sensing and signaling pathways that allow the parasite to adapt, have unique characteristics with respect to their hosts and other free-living organisms.

View Article and Find Full Text PDF

Poly(ADP-ribosyl)polymerase (PARP) synthesizes poly(ADP-ribose) (PAR), which is anchored to proteins. PAR facilitates multiprotein complexes' assembly. Nuclear PAR affects chromatin's structure and functions, including transcriptional regulation.

View Article and Find Full Text PDF

Poly(ADP-ribosyl)ation reactions constitute a post-translational protein modification synthesized in higher eukaryotes by a family of poly(ADP-ribose)polymerases (PARP) and catabolized mainly by poly(ADP-ribose) glycohydrolase (PARG). The best understood role of PARP is the maintenance of genomic integrity via the promotion of DNA repair that leads to cell survival when low levels of genotoxic stress occur. The participation of PARP in unleashing cell death at higher levels of damage has also been broadly studied.

View Article and Find Full Text PDF

Background: Poly-ADP-ribose (PAR) is a polymer synthesized by poly-ADP-ribose polymerases (PARPs) as a postranslational protein modification and catabolized mainly by poly-ADP-ribose glycohydrolase (PARG). In spite of the existence of cytoplasmic PARPs and PARG, research has been focused on nuclear PARPs and PAR, demonstrating roles in the maintenance of chromatin architecture and the participation in DNA damage responses and transcriptional regulation. We have recently detected non-nuclear PAR structurally and functionally associated to the E-cadherin rich and the actin cytoskeleton of VERO epithelial cells.

View Article and Find Full Text PDF

Background: Poly(ADP-ribose) (PAR) metabolism participates in several biological processes such as DNA damage signaling and repair, which is a thoroughly studied function. PAR is synthesized by Poly(ADP-ribose) polymerase (PARP) and hydrolyzed by Poly(ADP-ribose) glycohydrolase (PARG). In contrast to human and other higher eukaryotes, Trypanosoma brucei contains only one PARP and PARG.

View Article and Find Full Text PDF

Poly-ADP-ribose (PAR) is a polymer of up to 400 ADP-ribose units synthesized by poly-ADP-ribose-polymerases (PARPs) and degraded by poly-ADP-ribose-glycohydrolase (PARG). Nuclear PAR modulates chromatin compaction, affecting nuclear functions (gene expression, DNA repair). Diverse defined PARP cytoplasmic allocation patterns contrast with the yet still imprecise PAR distribution and still unclear functions.

View Article and Find Full Text PDF

Regulation of eukaryotic cell cycle progression requires sequential activation and inactivation of cyclin-dependent kinases (CDKs). Activation of the cyclin B-cdc2 kinase complex is a pivotal step in mitotic initiation and the tyrosine kinase Wee1 is a key regulator of cell cycle sequence during G2/M transition and inhibits mitotic entry by phosphorylating the inhibitory tyrosine 15 on the cdc2 M-phase-inducing kinase. Wee1 degradation is essential for the exit from the G2 phase.

View Article and Find Full Text PDF

Trypanosoma cruzi, etiological agent of Chagas' disease, has a complex life cycle which involves the invasion of mammalian host cells, differentiation and intracellular replication. Here we report the first insights into the biological role of a poly(ADP-ribose) glycohydrolase in a trypanosomatid (TcPARG). In silico analysis of the TcPARG gene pointed out the conservation of key residues involved in the catalytic process and, by Western blot, we demonstrated that it is expressed in a life stage-dependant manner.

View Article and Find Full Text PDF

Poly(ADP-ribosylation) is a post-translational covalent modification of proteins catalyzed by a family of enzymes termed poly(ADP-ribose) polymerases (PARPs). In the human genome, 17 different genes have been identified that encode members of the PARP superfamily. Poly (ADP-ribose) metabolism plays a role in a wide range of biological processes.

View Article and Find Full Text PDF

Poly(ADP-ribosyl)ation is a post-translational modification of proteins. Poly(ADP-ribose) polymerase (PARP) and poly(ADP-ribose) glycohydrolase (PARG) are the enzymes responsible for poly(ADP-ribose) (PAR) polymer metabolism and are present in most higher eukaryotes. The best understood role of PARP is the maintenance of genomic integrity either via promotion of DNA repair at low levels of genotoxic stress or via promotion of cell death at higher levels of damage.

View Article and Find Full Text PDF

Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme present in most eukaryotes and has been involved in processes such as DNA repair and gene expression. The poly(ADP-ribose) polymer (PAR) is mainly catabolised by poly(ADP-ribose) glycohydrolase. Here, we describe the cloning and characterisation of a PARP from Trypanosoma cruzi (TcPARP).

View Article and Find Full Text PDF