Publications by authors named "Salman Naqvi"

This work presents an integrated approach for the extraction of lipids from marine macroalgae using RSM optimization and thermo-kinetic analysis. The lipids were extracted from marine macroalgal biomass using a Soxhlet extractor. The Soxhlet extraction parameters, including temperature (60-80 °C), solvent-to-algae ratio (3:1-7:1), algal particle size (0.

View Article and Find Full Text PDF

Metal sulfides and 2D materials are the propitious candidates for numerous electrochemical applications, due to their superior conductivity and ample active sites. Herein, CuS nanoparticles were fabricated on 2D greener HF-free Cl-terminated MXene (TiCCl) sheets by the hydrothermal process as a proficient electrocatalyst for the hydrogen evolution reaction (HER) and overall water splitting. CuS/TiCCl showed an overpotential of 163 mV and a Tafel slope of 77 mV dec at 10 mA cm for the HER.

View Article and Find Full Text PDF

In the leather industry, tannery sludge is produced in large volume. This study investigated the thermal degradation behavior of tannery sludge using thermogravimetric analysis (TGA). The experiments were carried out in an inert atmosphere using nitrogen gas at varied heating rates of 5, 10, 20, and 40 °C/min in the temperature range of 30-900 °C.

View Article and Find Full Text PDF

This study investigated the effect of different CoO-based catalysts on the catalytic decomposition of nitrous oxide (NO) and on nitric oxide (NO) conversion. The experiments were carried out using various reaction temperatures, alkaline solutions, pH, mixing conditions, aging times, space velocities, impregnation loads, and compounds. The results showed that CoO catalysts prepared by precipitation methods have the highest catalytic activity and NO conversion, even at low reaction temperatures, while the commercial nano and powder forms of CoO (CS) have the lowest performance.

View Article and Find Full Text PDF

In this research, a dielectric barrier discharge (DBD) reactor is used to study the cracking of the toluene into C-C hydrocarbons. The combined effect of parameters such as temperature (20-400 °C) and plasma power (10-40 W) was investigated to evaluate the DBD reactor performance. The main gaseous products from the decomposition of toluene include lower hydrocarbon (C-C).

View Article and Find Full Text PDF

The substantial quantity of Cr(VI) contaminants in the aqueous atmosphere is a major environmental fear that cannot be overlooked. For the first time, MXene and chitosan-coated polyurethane foam have been employed for wastewater treatment, including heavy metal ions (Cr (VI)) through a fixed-bed column study. It is also the most inexpensive, lightweight, and globally friendly material tested.

View Article and Find Full Text PDF

Worldwide demand for oil, coal, and natural gas has increased recently because of odd weather patterns and economies recovering from the pandemic. By using these fuels at an astonishing rate, their reserves are running low with each passing decade. Increased reliance on these sources is contributing significantly to both global warming and power shortage problems.

View Article and Find Full Text PDF

Textile industries release effluent that contains the vast majority of heavy metals in which Cr (VI) is a toxic carcinogenic element that causes an environmental problem. The aim of the work is to synthesize algae-derived biochar derived from algae using slow pyrolysis at an operating temperature of 500 °C, a heating rate of 10 °C/min and a residence time of 60 min and to use it as an adsorbent to remove Cr (VI). The batch experiment was carried out using different concentrations of Cr (VI) (1, 10, 25, 50, 100, 125, 150 and 200 ppm) at different intervals of time (2.

View Article and Find Full Text PDF

Chemical looping combustion (CLC) is a promising technology that generates energy while inherently separating carbon dioxide from air using oxygen carriers. This allows for an efficient and cost-effective means of carbon capture and storage. Current CLC systems use coal with metal oxides for combustion in the fuel reactor, thus, resulting in some environmental impacts.

View Article and Find Full Text PDF

Lubricants operate as antifriction media, preserving machine reliability, facilitating smooth operation, and reducing the likelihood of frequent breakdowns. The petroleum-based reserves are decreasing globally, leading to price increases and raising concerns about environmental degradation. The researchers are concentrating their efforts on developing and commercializing an environmentally friendly lubricant produced from renewable resources.

View Article and Find Full Text PDF

Purification of Natural gas is vital for utilizing it as a source of energy harvesting for the world. Amine-based chemical absorption technique is the most utilized in the gas field for the purification of gas that ensures the purity of the sweet gas stream with the elimination of carbon dioxide. However, it is considered an energy-intensive process to deal with considerable energy loss and environmental damage to the ecosystem.

View Article and Find Full Text PDF

Textile industry utilize a massive amount of dyes for coloring. The dye-containing effluent is released into wastewater along with heavy metals that are part of dye structure. The treatment of textile industry wastewater using conventional techniques (coagulation, membrane technique, electrolysis ion exchange, etc.

View Article and Find Full Text PDF

Abstract: The global market for fuel pellets (FPs) has been steadily growing because of a shift to coal substitutes. However, sustainability and the availability of biomass are the main issues. Various kinds of bio-wastes can be valorized through cutting-edge technologies.

View Article and Find Full Text PDF

The economic viability of microalgae as a bioenergy source depends on many factors. High CO fixing rate, improved lipids yield, and minimum water footprint are few key parameters. This study investigates the effect of four initial nitrogen concentrations (1-, 2-, 6- and 10-mM as nitrate) on lipids yield, their classification and composition, CO fixation rate, and water quality for further reuse after first cultivation.

View Article and Find Full Text PDF

It is extremely prudent and highly challenging to design a greener bifunctional electrocatalyst that shows effective electrocatalytic activity and high stability toward electrochemical water splitting. As several hundred tons of catalysts are annually deactivated by deposition of carbon, herein, we came up with a strategy to reutilize spent methane reforming catalysts that were deactivated by the formation of graphitic carbon (GC) and carbon nanofibers (CNF). An electrocatalyst was successfully synthesized by in situ deposition of noble metal-free MoS over spent catalysts via a hydrothermal method that showed exceptional performance regarding the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER).

View Article and Find Full Text PDF

During the current global public health emergency caused by novel coronavirus disease 19 (COVID-19), researchers and medical experts started working day and night to search for new technologies to mitigate the COVID-19 pandemic. Recent studies have shown that artificial intelligence (AI) has been successfully employed in the health sector for various healthcare procedures. This study comprehensively reviewed the research and development on state-of-the-art applications of artificial intelligence for combating the COVID-19 pandemic.

View Article and Find Full Text PDF

Coffee is a globally consumed beverage that produces a substantial amount of valuable organic waste known as spent coffee grounds (SCG). Although SCG is a non-edible biomass, research initiatives focused on valorizing/utilizing its organic content, protecting the environment, and reducing the high oxygen demand required for its natural degradation. The integration with biorefinery in general and with pyrolysis process in specific is considerered the most successful solid waste management strategy of SCG that produce energy and high-value products.

View Article and Find Full Text PDF

Agro-Wastes are identified as to manufacture potential valuable organic biochar fertilizer product economically while also managing the waste. Biochar (BC) produced from agriculture waste is helps to improve the soil because of its neutral pH, addition of organic carbon to the soil and lower salt index values. This study focused on the development of nano-biochar into a more enhanced biochar product where it was checked whether the biochar derived from wheat straw can absorb nutrients and then act as support matter for releasing micro-nutrients and macro-nutrients for the plants on slow liberation basis.

View Article and Find Full Text PDF

As plastics have been omnipresent in society ever since their introduction in 1907, global plastic production has ballooned in the 20th century or the Plasticene Era (Plastic Age). After their useful life span, they deliberately or accidentally, are disposed of in the environment. Influenced by different factors, plastics undergo fragmentation into microplastics (MPs) and present hazardous risks in all life forms including humans.

View Article and Find Full Text PDF

Application of advanced pyrolysis processes to agricultural waste for liquid production is gaining great attention, especially when it is applied to an economic crop like tobacco. In this work, tobacco residues were pyrolyzed in an ablative reactor under vacuum. The maximum bio-oil yield of 55% w/w was obtained at 600°C with a particle size of 10 mm at a blade rotation speed of 10 rpm.

View Article and Find Full Text PDF

Precis: Trabeculectomy can effectively lower intraocular pressure (IOP). A more junior surgeon profile is emerging. Mitomycin C (MMC) has replaced 5-fluorouracil (5-FU) intraoperatively with comparable success rates and a decrease in postoperative antimetabolite administration.

View Article and Find Full Text PDF

Rapid population growth integrated with poor governance and urban planning is highly challenging resulting key for the selection of unsuitable landfill sites, particularly in developing counties. Therefore, the aim of this study is to investigate the suitable solid waste landfill sites in the capital of the country as a case study, by the integration of Geographical Information System (GIS) with fuzzy logic, analytical hierarchy process (AHP), and weighted linear combination (WLC) method based on multi-criteria decision-making (MCDM). We chose thirteen (13) criteria (9 factors and 4 constraints) and grouped them into two main categories (environmental and socioeconomic) to achieve the objectives.

View Article and Find Full Text PDF

Layered zeolites and their delaminated structures are novel materials that enhance the catalytic performance of catalysts by addressing diffusion limitations of the reactant molecules. n-Hexane catalytic cracking was observed over MCM-22 layered zeolite and its derivative structures over the temperature range of 450-650 °C for the production of olefins. MCM-22, H-MCM-22, and ITQ-2 zeolites were prepared by the hydrothermal method.

View Article and Find Full Text PDF

The current study delineated the distribution, (hydro)geochemical behavior and health risk of arsenic (As) in shallow (depth < 35 m; handpumps and electric pumps) and deep (depth > 35 m; tube wells) aquifers in five areas along the Indus River (Bhakar, Kallur Kot), Jhelum River (Jhelum) and Chenab River (Hafizabad, Gujranwala) floodplains of Punjab, Pakistan. Relatively, greater As concentration was observed in deep wells (mean: 24.3 µg L) compared to shallow wells (19.

View Article and Find Full Text PDF