Publications by authors named "Salman Movahedirad"

The imperative to decarbonize the energy sector has prompted substantial advancements in clean electricity generation, with hydrogen emerging as a promising low-carbon energy carrier. While hydrogen synthesis from renewable sources is crucial, challenges persist, necessitating innovative approaches for efficient and sustainable production. This study leverages diverse artificial neural network (ANN) models to assess and predict system efficiency based on key operational variables in membrane reactor systems.

View Article and Find Full Text PDF

This study investigates an oil/water two-phase system to assess the potential efficacy of a novel passive mixer in enhancing the liquid-liquid interfacial area within a micro-channel contactor. In this system, two fluids are introduced into a microchannel with a diameter of 800 μm and a length of 20 cm, which is equipped with a stainless-steel helical wire measuring 250 μm in diameter. Throughout the experiments, both fluids are supplied at equal flow rates, and the dominant forces, including attachment and detachment forces, are examined.

View Article and Find Full Text PDF

Dissolved air flotation (DAF) is an effective method for separating suspended oil and solid particles from wastewater by utilizing small air bubbles. This study aims to investigate the impact of key factors, such as saturating pressure and water flow rate, on the separation of fine oil droplets from a water stream. The macroscopic flow patterns within the cell were analyzed using particle image velocimetry (PIV), while Digital Image Analysis (DIA) was employed to study microscopic phenomena, including oil droplet rising velocity and oil-bubble contact mechanisms.

View Article and Find Full Text PDF

In the present study, hybrid activation of sodium peroxydisulfate (PS) by hydrodynamic cavitation and ultraviolet radiation was investigated for Congo Red (CR) degradation. Experiments were conducted using the Box-Benken design on inlet pressure (2-6 bar), PS concentration (0-50 mg. L) and UV radiation power (0-32 W).

View Article and Find Full Text PDF

The present study aims to investigate the hydrodynamic behavior of gas-solid flow in a pseudo-two-dimensional cold circulation fluidized bed specifically designed to mimic a plane cut of an industrial methanol-to-olefins (MTO) bed. The solid velocity pattern was experimentally examined using the Particle Image Velocimetry with Digital Image Analysis (PIV-DIA) technique. The hydrodynamics of this pseudo-2D bed were studied using the twoPhaseEulerFoam solver in OpenFOAM, and the adjusted solver was validated through solid particle velocity and solid volume fraction comparisons, showing good agreement with experimental data.

View Article and Find Full Text PDF

This study aimed to investigate the adsorption mechanism of Pb in wastewater using activated carbon derived from inexpensive materials, specifically avocado, bitter orange, and walnut leaves, through a single-step chemical activation process. The activated carbon was prepared using sulfuric acid as an activator, with a particle size of 1 mm. The pyrolysis reactor (slow-pyrolysis) operated at 600 °C for 90 min with a nitrogen flow rate of 5 L/min.

View Article and Find Full Text PDF

Core/shell microdroplets formation with uniform size is investigated numerically in the co-flow microchannel. The interface and volume fraction contour between three immiscible fluids are captured using a ternary phase-field model. Previous research has shown that the effective parameters of microdroplet size are the physical properties and velocity of the three phases.

View Article and Find Full Text PDF

In the present study, the oxidative desulfurization (ODS) of Sn 650 base oil with total sulfur content of 10,000 ppmw has been investigated experimentally. The response surface methodology (RSM) considering Box-Behnken design (BBD) was applied to examine the impacts of the oxidation temperature (30-70˚C), hydrogen peroxide to sulfur molar ratio (2-8), and formic acid to sulfur molar ratio (20-60) on the sulfur removal. In the next step, the appropriate values of the independent variables such as stirrer speed (750-1250 rpm), reaction time (60-180 min), and the number of extraction stages (1-4) were determined based on the optimal result obtained from the BBD.

View Article and Find Full Text PDF

Hydroynamic fluid tortuosity is a parameter to describe the fluid streamlines average elongation. The motivation of the present study is introducing a new concept for theoretical predictions of dynamic tortuosity effects on mass transfer in a novel three-dimensional passive T-shape micro-mixer both experimentally and by numerical simulation. In the numerical analysis, continuity, motion, and diffusion-convection equations were solved, and the amount of mass transfer and the fluid tortuosity was calculated for different rectangular winglet angles.

View Article and Find Full Text PDF

In this work, a cylindrical multi-probe continuous flow system with different injection strategies was exploited to study ultrasound assisted oxidative desulfurization process. The effects of nozzle number, nozzle diameter, ultrasonic power and volumetric flow rate (residence time) on the desulfurization efficiency of the diesel fuel were investigated. It was found that the sulfur removal increases by increasing the nozzle diameter when the flow rate is fixed.

View Article and Find Full Text PDF

Ultrasound assisted oxidative desulfurization (UAOD) is a promising technology, which can result in ultra-low sulfur fuels in order to reduce the environmental crisis. Most of the researches have been conducted with the experimental approaches. In the present study, a computational fluid dynamic (CFD) model has been developed to investigate the hydrodynamics as well as the reactions involved in a sonoreactor.

View Article and Find Full Text PDF

A new continuous-flow ultrasound assisted oxidative desulfurization (UAOD) process was developed in order to decrease energy and aqueous phase consumption. In this process the aqueous phase is injected below the horn tip leading to enhanced mixing of the phases. Diesel fuel as the oil phase with sulfur content of 1550ppmw and an appropriate mixture of hydrogen peroxide and formic acid as the aqueous phase were used.

View Article and Find Full Text PDF

Recently, great attention has been paid to predict the acoustic streaming field distribution inside the sonoreactors, induced by high-power ultrasonic wave generator. The focus of this paper is to model an ultrasonic vibrating horn and study the induced flow pattern with a newly developed moving boundary condition. The numerical simulation utilizes the modified cavitation model along with the "mixture" model for turbulent flow (RNG, k-ε), and a moving boundary condition with an oscillating parabolic-logarithmic profile, applied to the horn tip.

View Article and Find Full Text PDF