Publications by authors named "Salma-Ancane K"

Article Synopsis
  • The study developed injectable mineralized antibacterial nanocomposite hydrogels using high-content Sr-substituted hydroxyapatite (Sr-HAp) nanoparticles blended with a cross-linked ɛ-polylysine (ɛ-PL) and hyaluronic acid (HA) matrix for bone tissue regeneration.
  • Characterization of the hydrogels showed adjustable physical properties, good stability against enzymatic degradation, and effective antibacterial activity, even with higher concentrations of Sr-HAp.
  • Cell tests demonstrated that these nanocomposite hydrogels were cytocompatible and promoted the synthesis of pre-collagen I, indicating their potential use in bone healing applications.
View Article and Find Full Text PDF

Synthetic hydroxyapatite nanoparticles (nHAp) possess compositional and structural similarities to those of bone minerals and play a key role in bone regenerative medicine. Functionalization of calcium phosphate biomaterials with Sr, ..

View Article and Find Full Text PDF

The design of multifunctional hydrogels based on bioactive hyaluronic acid (HA) and antibacterial cationic polymer ɛ-poly-l-lysine (ε-PL) is a promising tool in tissue engineering applications. In the current study, we have designed hyaluronic acid and ɛ-polylysine composite hydrogel systems with antibacterial and cell attractive properties. Two distinct crosslinking approaches were used: the physical crosslinking based on electrostatic attractions and the chemical crosslinking of charged functional groups (-NH and -COOH).

View Article and Find Full Text PDF

Recent progress made in biomaterials and their clinical applications is well known. In the last five decades, great advances have been made in the field of biomaterials, including ceramics, glasses, polymers, composites, glass-ceramics and metal alloys. A variety of bioimplants are currently used in either one of the aforesaid forms.

View Article and Find Full Text PDF

The review covers historical and last decade's scientific literature on the biological and clinical role of strontium (Sr) and strontium ranelate (Sr RAN). It enrols the description of the main effects of Sr on supportive tissue, its proven and possible morphopathogenetical mechanisms and the interaction with the bone, and especially focuses on the Sr ability to inhibit osteoclasts and affect the programmed cell death. The main experimental and clinical experience regarding the Sr RAN influence in the treatment of osteoporosis and the search for correct doses is also highlighted.

View Article and Find Full Text PDF

The in vitro and in vivo performance of hydroxyapatite (HAp) coatings can be modified by the addition of different trace ions, such as silicon (Si), lithium (Li), magnesium (Mg), zinc (Zn) or strontium (Sr) into the HAp lattice, to more closely mirror the complex chemistry of human bone. To date, most of the work in the literature has considered single ion-substituted materials and coatings, with limited reports on co-substituted calcium phosphate systems. The aim of this study was to investigate the potential of radio frequency magnetron sputtering to deposit Sr and Zn co-substituted HAp coatings using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

In the last five decades, there have been vast advances in the field of biomaterials, including ceramics, glasses, glass-ceramics and metal alloys. Dense and porous ceramics have been widely used for various biomedical applications. Current applications of bioceramics include bone grafts, spinal fusion, bone repairs, bone fillers, maxillofacial reconstruction, etc.

View Article and Find Full Text PDF