Publications by authors named "Salma Sheikh-Mohamed"

Article Synopsis
  • - Neutralizing antibodies (Abs) against SARS-CoV-2 vary widely among individuals recovering from the virus, with higher levels found in those with severe COVID-19 cases.
  • - Heat inactivation of convalescent serum significantly reduces its neutralization activity by inactivating complement proteins, which play a major role in the body’s immune response against the virus.
  • - The study highlights that the complement pathway is crucial for effective viral neutralization and that its contribution can be more than 50% of the neutralizing effect in untreated serum.
View Article and Find Full Text PDF

Our understanding of the quality of cellular and humoral immunity conferred by COVID-19 vaccination alone versus vaccination plus SARS-CoV-2 breakthrough (BT) infection remains incomplete. While the current (2023) SARS-CoV-2 immune landscape of Canadians is complex, in late 2021 most Canadians had either just received a third dose of COVID-19 vaccine, or had received their two-dose primary series and then experienced an Omicron BT. Herein we took advantage of this coincident timing to contrast cellular and humoral immunity conferred by three doses of vaccine versus two doses plus BT.

View Article and Find Full Text PDF

Older individuals and people with HIV (PWH) were prioritized for COVID-19 vaccination, yet comprehensive studies of the immunogenicity of these vaccines and their effects on HIV reservoirs are not available. Our study on 68 PWH and 23 HIV-negative participants aged 55 and older post-three vaccine doses showed equally strong anti-spike IgG responses in serum and saliva through week 48 from baseline, while PWH salivary IgA responses were low. PWH had diminished live-virus neutralization responses after two vaccine doses, which were 'rescued' post-booster.

View Article and Find Full Text PDF

Older individuals and people with HIV (PWH) were prioritized for COVID-19 vaccination, yet comprehensive studies of the immunogenicity of these vaccines and their effects on HIV reservoirs are not available. We followed 68 PWH aged 55 and older and 23 age-matched HIV-negative individuals for 48 weeks from the first vaccine dose, after the total of three doses. All PWH were on antiretroviral therapy (cART) and had different immune status, including immune responders (IR), immune non-responders (INR), and PWH with low-level viremia (LLV).

View Article and Find Full Text PDF

In early 2020, a global emergency was upon us in the form of the coronavirus disease 2019 (COVID-19) pandemic. While horrific in its health, social and economic devastation, one silver lining to this crisis has been a rapid mobilization of cross-institute, and even cross-country teams that shared common goals of learning as much as we could as quickly as possible about the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and how the immune system would respond to both the virus and COVID-19 vaccines. Many of these teams were formed by women who quickly realized that the classical model of "publish first at all costs" was maladaptive for the circumstances and needed to be supplanted by a more collaborative solution-focused approach.

View Article and Find Full Text PDF

Although SARS-CoV-2 infects the upper respiratory tract, we know little about the amount, type, and kinetics of antibodies (Ab) generated in the oral cavity in response to COVID-19 vaccination. We collected serum and saliva samples from participants receiving two doses of mRNA COVID-19 vaccines and measured the level of anti-SARS-CoV-2 Ab. We detected anti-Spike and anti-Receptor Binding Domain (RBD) IgG and IgA, as well as anti-Spike/RBD associated secretory component in the saliva of most participants after dose 1.

View Article and Find Full Text PDF

The CNS is tightly regulated to maintain immune surveillance and efficiently respond to injury and infections. The current appreciation that specialized "brain-adjacent" regions in the CNS are in fact not immune privileged during the steady state, and that immune cells can take up residence in more immune-privileged areas of the CNS during inflammation with consequences on the adjacent brain parenchyma, beg the question of what cell types support CNS immunity. As they do in secondary lymphoid organs, we provide evidence in this review that stromal cells also underpin brain-resident immune cells.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is characterized by demyelinated and inflammatory lesions in the brain and spinal cord that are highly variable in terms of cellular content. Here, we used imaging mass cytometry (IMC) to enable the simultaneous imaging of 15+ proteins within staged MS lesions. To test the potential for IMC to discriminate between different types of lesions, we selected a case with severe rebound MS disease activity after natalizumab cessation.

View Article and Find Full Text PDF