A synthetic 'chondroinductive' biomaterial that could induce chondrogenesis without the need for growth factors, extracellular matrix, or pre-seeded cells could revolutionize orthopedic regenerative medicine. The objective of the current study was thus to introduce a synthetic SPPEPS peptide and evaluate its ability to induce chondrogenic differentiation. In the current study, dissolving a synthetic chondroinductive peptide candidate (100 ng/mL SPPEPS) in the culture medium of rat bone marrow-derived mesenchymal stem cells (rBMSCs) elevated collagen type II gene expression compared to the negative control (no growth factor or peptide in the cell culture medium) after 3 days.
View Article and Find Full Text PDFTissue Eng Part B Rev
June 2019
In the field of regenerative medicine, creating a biomaterial device with the potential alone to affect cellular fate is a desirable translational strategy. Native tissues and growth factors are attractive candidates to provide desired signals in a biomaterial environment. However, these molecules can have translational challenges such as high cost, complicated regulatory pathways, and/or limitations with reproducibility.
View Article and Find Full Text PDF