Background: Herein we describe a small-diameter vascular graft constructed from rolled human amniotic membrane (hAM), with in vitro evaluation and subsequent in vivo assessment of its mechanical and initial biologic viability in the early postimplantation period. This approach for graft construction allows customization of graft dimensions, with wide-ranging potential clinical applicability as a nonautologous, allogeneic, cell-free graft material.
Methods: Acellular hAMs were rolled into layered conduits (3.
At approximately 50 µm thin, the human amniotic membrane (hAM) has been shown to be a versatile biomaterial with applications ranging from ocular transplants to skin and nerve regeneration. These investigations describe laminating layers of the hAM into a multilayered, conformation creating a thicker, more robust biomaterial for applications requiring more supportive structures. Amniotic membranes were decellularized using 4 M NaCl and prepared as either flat single-layered sheets or rolled into concentric five-layered configurations.
View Article and Find Full Text PDFTissue Eng Part C Methods
November 2012
The prevalence of cardiovascular disease and the limited availability of suitable autologous transplant vessels for coronary and peripheral bypass surgeries is a significant clinical problem. A great deal of progress has been made over recent years to develop biodegradable materials with the potential to remodel and regenerate vascular tissues. However, the creation of functional biological scaffolds capable of withstanding vascular stress within a clinically relevant time frame has proved to be a challenging proposition.
View Article and Find Full Text PDF