Publications by authors named "Sally Thompson"

Understanding and predicting plant water dynamics during and after water stress is increasingly important but challenging because the high-dimensional nature of the soil-plant-atmosphere system makes it difficult to identify mechanisms and constrain behaviour. Datasets that capture hydrological, physiological and meteorological variation during changing water availability are relatively rare but offer a potentially valuable resource to constrain plant water dynamics. This study reports on a drydown and re-wetting experiment of potted Populus trichocarpa, which intensively characterised plant water fluxes, water status and water sources.

View Article and Find Full Text PDF

Terrestrial water fluxes are substantially mediated by vegetation, while the distribution, growth, health, and mortality of plants are strongly influenced by the availability of water. These interactions, playing out across multiple spatial and temporal scales, link the disciplines of plant ecophysiology and ecohydrology. Despite this connection, the disciplines have provided complementary, but largely independent, perspectives on the soil-plant-atmosphere continuum since their crystallization as modern scientific disciplines in the late 20th century.

View Article and Find Full Text PDF

Observations show vulnerability segmentation between stems and leaves is highly variable within and between environments. While a number of species exhibit conventional vulnerability segmentation (stem leaf ), others exhibit no vulnerability segmentation and others reverse vulnerability segmentation (stem leaf ). We developed a hydraulic model to test hypotheses about vulnerability segmentation and how it interacts with other traits to impact plant conductance.

View Article and Find Full Text PDF

In 2020, the Australian and New Zealand flux research and monitoring network, OzFlux, celebrated its 20 anniversary by reflecting on the lessons learned through two decades of ecosystem studies on global change biology. OzFlux is a network not only for ecosystem researchers, but also for those 'next users' of the knowledge, information and data that such networks provide. Here, we focus on eight lessons across topics of climate change and variability, disturbance and resilience, drought and heat stress and synergies with remote sensing and modelling.

View Article and Find Full Text PDF

Hydrogen sulfide (H S) plays a crucial signalling role in a variety of physiological systems, existing as the hydrosulfide anion (HS ) at physiological pH. Combining the potency of halogen bonding (XB) for anion recognition in water with coumarin fluorophore incorporation in acyclic host structural design, the first XB receptors to bind and, more importantly, sense the hydrosulfide anion in pure water in a reversible chemosensing fashion are demonstrated. The XB receptors exhibit characteristic selective quenching of fluorescence upon binding to HS .

View Article and Find Full Text PDF

Large-scale agriculture in the state of Mato Grosso, Brazil is a major contributor to global food supplies, but its continued productivity is vulnerable to contracting wet seasons and increased exposure to extreme temperatures. Sowing dates serve as an effective adaptation strategy to these climate perturbations. By controlling the weather experienced by crops and influencing the number of successive crops that can be grown in a year, sowing dates can impact both individual crop yields and cropping intensities.

View Article and Find Full Text PDF

●Plants are characterized by the iso/anisohydry continuum depending on how they regulate leaf water potential (Ψ ). However, how iso/anisohydry changes over time in response to year-to-year variations in environmental dryness and how such responses vary across different regions remains poorly characterized. ●We investigated how dryness, represented by aridity index, affects the interannual variability of ecosystem iso/anisohydry at the regional scale, estimated using satellite microwave vegetation optical depth (VOD) observations.

View Article and Find Full Text PDF

Drought extent and severity have increased and are predicted to continue to increase in many parts of the world. Understanding tree vulnerability to drought at both individual and species levels is key to ongoing forest management and preparation for future transitions in community composition. The influence of subsurface hydrologic processes is particularly important in water-limited ecosystems, and is an under-studied aspect of tree drought vulnerability.

View Article and Find Full Text PDF

Vulnerability to embolism varies between con-generic species distributed along aridity gradients, yet little is known about intraspecific variation and its drivers. Even less is known about intraspecific variation in tissues other than stems, despite results suggesting that roots, stems and leaves can differ in vulnerability. We hypothesized that intraspecific variation in vulnerability in leaves and stems is adaptive and driven by aridity.

View Article and Find Full Text PDF

Rationale & Objective: Traditional risk estimates for atherosclerotic vascular disease (ASVD) and death may not perform optimally in the setting of chronic kidney disease (CKD). We sought to determine whether the addition of measures of inflammation and kidney function to traditional estimation tools improves prediction of these events in a diverse cohort of patients with CKD.

Study Design: Observational cohort study.

View Article and Find Full Text PDF

Despite the appeal of the iso/anisohydric framework for classifying plant drought responses, recent studies have shown that such classifications can be strongly affected by a plant's environment. Here, we present measured in situ drought responses to demonstrate that apparent isohydricity can be conflated with environmental conditions that vary over space and time. In particular, we (a) use data from an oak species (Quercus douglasii) during the 2012-2015 extreme drought in California to demonstrate how temporal and spatial variability in the environment can influence plant water potential dynamics, masking the role of traits; (b) explain how these environmental variations might arise from climatic, topographic, and edaphic variability; (c) illustrate, through a "common garden" thought experiment, how existing trait-based or response-based isohydricity metrics can be confounded by these environmental variations, leading to Type-1 (false positive) and Type-2 (false negative) errors; and (d) advocate for the use of model-based approaches for formulating alternate classification schemes.

View Article and Find Full Text PDF

Many recent studies on drought-induced vegetation mortality have explored how plant functional traits, and classifications of such traits along axes of, for example, isohydry-anisohydry, might contribute to predicting drought survival and recovery. As these studies proliferate, the consistency and predictive value of such classifications need to be carefully examined. Here, we outline the basis for a systematic classification of plant drought responses that accounts for both environmental conditions and functional traits.

View Article and Find Full Text PDF

Although recent findings suggest that xylem embolism represents a significant, drought-induced damaging process in land plants, substantial debate surrounds the capacity of long-vesseled, ring-porous species to resist embolism. We investigated whether recent methodological developments could help resolve this controversy within , a long-vesseled, ring-porous temperate angiosperm genus, and shed further light on the importance of xylem vulnerability to embolism as an indicator of drought tolerance. We used the optical technique to quantify leaf and stem xylem vulnerability to embolism of eight species from the Mediterranean-type climate region of California to examine absolute measures of resistance to embolism as well as any potential hydraulic segmentation between tissue types.

View Article and Find Full Text PDF

Climate, physical landscapes, and biota interact to generate heterogeneous hydrologic conditions in space and over time, which are reflected in spatial patterns of species distributions. As these species distributions respond to rapid climate change, microrefugia may support local species persistence in the face of deteriorating climatic suitability. Recent focus on temperature as a determinant of microrefugia insufficiently accounts for the importance of hydrologic processes and changing water availability with changing climate.

View Article and Find Full Text PDF

Studies of the hydroclimate at regional scales rely on spatial rainfall data products, derived from remotely-sensed (RS) and in-situ (IS, rain gauge) observations. Because regional rainfall cannot be directly measured, spatial data products are biased. These biases pose a source of uncertainty in environmental analyses, attributable to the choices made by data-users in selecting a representation of rainfall.

View Article and Find Full Text PDF

Current models used for predicting vegetation responses to climate change are often guided by the dichotomous needs to resolve either (i) internal plant water status as a proxy for physiological vulnerability or (ii) external water and carbon fluxes and atmospheric feedbacks. Yet, accurate representation of fluxes does not always equate to accurate predictions of vulnerability. We resolve this discrepancy using a hydrodynamic framework that simultaneously tracks plant water status and water uptake.

View Article and Find Full Text PDF

Background: Given Australia's population ageing and predicted impacts related to health, productivity, equity and enhancing quality of life outcomes for senior Australians, lifelong learning has been identified as a pathway for addressing the risks associated with an ageing population. To date Australian governments have paid little attention to addressing these needs and thus, there is an urgent need for policy development for lifelong learning as a national priority. The purpose of this article is to explore the current lifelong learning context in Australia and to propose a set of factors that are most likely to impact learning in later years.

View Article and Find Full Text PDF

The liberalization of marijuana policies, including the legalization of medical and recreational marijuana, is sweeping the United States and other countries. Marijuana cultivation can have significant negative collateral effects on the environment that are often unknown or overlooked. Focusing on the state of California, where by some estimates 60%-70% of the marijuana consumed in the United States is grown, we argue that (a) the environmental harm caused by marijuana cultivation merits a direct policy response, (b) current approaches to governing the environmental effects are inadequate, and

View Article and Find Full Text PDF

A broad class of soil fungi form the annular patterns known as 'fairy rings' and provide one of the only means to observe spatio-temporal dynamics of otherwise cryptic fungal growth processes in natural environments. We present observations of novel spiral and rotor patterns produced by fairy ring fungi and explain these behaviors mathematically by first showing that a well known model of fairy ring fungal growth and the Gray-Scott reaction-diffusion model are mathematically equivalent. We then use bifurcation analysis and numerical simulations to identify the conditions under which spiral waves and rotors can arise.

View Article and Find Full Text PDF

Seed dispersal alters gene flow, reproduction, migration and ultimately spatial organization of dryland ecosystems. Because many seeds in drylands lack adaptations for long-distance dispersal, seed transport by secondary processes such as tumbling in the wind or mobilization in overland flow plays a dominant role in determining where seeds ultimately germinate. Here, recent developments in modeling runoff generation in spatially complex dryland ecosystems are reviewed with the aim of proposing improvements to mechanistic modeling of seed dispersal processes.

View Article and Find Full Text PDF

Global change will simultaneously impact many aspects of climate, with the potential to exacerbate the risks posed by plant pathogens to agriculture and the natural environment; yet, most studies that explore climate impacts on plant pathogen ranges consider individual climatic factors separately. In this study, we adopt a stochastic modeling approach to address multiple pathways by which climate can constrain the range of the generalist plant pathogen Phytophthora cinnamomi (Pc): through changing winter soil temperatures affecting pathogen survival; spring soil temperatures and thus pathogen metabolic rates; and changing spring soil moisture conditions and thus pathogen growth rates through host root systems. We apply this model to the southwestern USA for contemporary and plausible future climate scenarios and evaluate the changes in the potential range of Pc.

View Article and Find Full Text PDF

Dryland ecosystems commonly exhibit periodic bands of vegetation, thought to form due to competition between individual plants for heterogeneously distributed water. In this paper, we develop a Fourier method for locally identifying the pattern wavenumber and orientation, and apply it to aerial images from a region of vegetation patterning near Fort Stockton, TX, USA. We find that the local pattern wavelength and orientation are typically coherent, but exhibit both rapid and gradual variation driven by changes in hillslope gradient and orientation, the potential for water accumulation, or soil type.

View Article and Find Full Text PDF

Dryland ecosystems commonly exhibit periodic bands of vegetation, thought to form due to competition between individual plants for heterogeneously distributed water. In this paper, we develop a Fourier method for locally identifying the pattern wavenumber and orientation, and apply it to aerial images from a region of vegetation patterning near Fort Stockton, TX, USA. We find that the local pattern wavelength and orientation are typically coherent, but exhibit both rapid and gradual variation driven by changes in hillslope gradient and orientation, the potential for water accumulation, or soil type.

View Article and Find Full Text PDF

Migration of plant populations is a potential survival response to climate change that depends critically on seed dispersal. Biological and physical factors determine dispersal and migration of wind-dispersed species. Recent field and wind tunnel studies demonstrate biological adaptations that bias seed release toward conditions of higher wind velocity, promoting longer dispersal distances and faster migration.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session78b4bh3gj2kt58m6i2a0is35nkugofnj): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once