White-nose syndrome is an emergent wildlife disease that has killed millions of North American bats. It is caused by Pseudogymnoascus destructans, a cold-loving, invasive fungal pathogen that grows on bat tissues and disrupts normal hibernation patterns. Previous work identified trans-2-hexenal as a fungistatic volatile compound that potentially could be used as a fumigant against P.
View Article and Find Full Text PDFWhite-nose syndrome (WNS) is caused by , a psychrophilic fungus that infects hibernating bats and has caused a serious decline in some species. Natural aroma compounds have been used to control growth of fungal food storage pathogens, so we hypothesized that a similar strategy could work for control of . The effectiveness of exposure to low concentrations of the vapor phase of four of these compounds was tested on mycelial plugs and conidiospores at temperatures of 5, 10 and 15 °C.
View Article and Find Full Text PDFThe aim of this study is to investigate the effects of three volatile oxylipins on colony development in two fungi and on Drosophila larval metamorphosis. Using an airborne exposure technique, three common and volatile oxylipins (1-octen-3-ol, (E)-2-hexenal, and 1-hexanol) were compared for their effects on spore germination and colony growth in Aspergillus niger and Penicillium chrysogenum, as well as for their effects on the morphogenesis of larvae of Drosophila melanogaster. Conidia of both A.
View Article and Find Full Text PDFThe ability of nisin, synthetic temporin analogs, magainins, defensins, and cecropins to inhibit Bacillus anthracis, Bacillus cereus, Bacillus thuringiensis, Bacillus mycoides, and Bacillus subtilis growth from spore inocula was determined using well diffusion assays. Nisin, magainin II amide, and defensins were inhibitory in screening against B. anthracis Sterne or B.
View Article and Find Full Text PDFThe objectives of this study were to compare generation and lag times of virulent Bacillus anthracis strains with those of other Bacillus strains, to identify possible surrogates for growth studies, and to determine if the B. cereus module of the U.S.
View Article and Find Full Text PDF