Publications by authors named "Sally Mayasich"

The US Environmental Protection Agency is evaluating the ecological and toxicological effects of per- and polyfluorinated chemicals. A number of perfluorinated chemicals have been shown to impact the thyroid axis in vivo suggesting that the thyroid hormone system is a target of these chemicals. The objective of this study was to evaluate the activity of 136 perfluorinated chemicals at seven key molecular initiating events (MIE) within the thyroid axis using nine in vitro assays.

View Article and Find Full Text PDF

The US Environmental Protection Agency Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool is a fast, freely available, online screening application that allows researchers and regulators to extrapolate toxicity information across species. For biological targets in model systems such as human cells, mice, rats, and zebrafish, toxicity data are available for a variety of chemicals. Through the evaluation of protein target conservation, this tool can be used to extrapolate data generated from such model systems to thousands of other species lacking toxicity data, yielding predictions of relative intrinsic chemical susceptibility.

View Article and Find Full Text PDF
Article Synopsis
  • New Approach Methodologies (NAMs) aim to reduce the need for vertebrate animal testing in ecotoxicology and risk assessment by using bioinformatics tools like SeqAPASS to analyze amino acid conservation across species.
  • SeqAPASS helps identify critical amino acids for thyroid hormone binding in the DIO3 enzyme, which guided the creation of six variant proteins through site-directed mutagenesis for in vitro testing of chemical inhibitors.
  • Molecular modeling and virtual docking were utilized to study protein interactions, highlighting that factors such as amino acid characteristics and binding site complexities are crucial for evaluating chemical effects across species.
View Article and Find Full Text PDF

Computational screening for potentially bioactive molecules using advanced molecular modeling approaches including molecular docking and molecular dynamic simulation is mainstream in certain fields like drug discovery. Significant advances in computationally predicting protein structures from sequence information have also expanded the availability of structures for nonmodel species. Therefore, the objective of the present study was to develop an analysis pipeline to harness the power of these bioinformatics approaches for cross-species extrapolation for evaluating chemical safety.

View Article and Find Full Text PDF

The gut has been proposed as a potential alternative entry route for SARS-CoV-2. This was mainly based on the high levels of SARS-CoV-2 receptor expressed in the gastrointestinal (GI) tract, the observations of GI disorders (such as diarrhea) in some COVID-19 patients and the detection of SARS-CoV-2 RNA in feces. However, the underlying mechanisms remain poorly understood.

View Article and Find Full Text PDF

On April 28-29, 2021, 50 scientists from different fields of expertise met for the 3rd online CIAO workshop. The CIAO project “Modelling the Pathogenesis of COVID-19 using the Adverse Outcome Pathway (AOP) framework” aims at building a holistic assembly of the available scientific knowledge on COVID-19 using the AOP framework. An individual AOP depicts the disease progression from the initial contact with the SARS-CoV-2 virus through biological key events (KE) toward an adverse outcome such as respiratory distress, anosmia or multiorgan failure.

View Article and Find Full Text PDF

Deiodinase enzymes are critical for tissue-specific and temporal control of activation or inactivation of thyroid hormones during vertebrate development, including amphibian metamorphosis. We previously screened ToxCast chemicals for inhibitory activity toward human recombinant Type 3 iodothyronine deiodinase enzyme (hDIO3) and subsequently produced Xenopus laevis recombinant dio3 enzyme (Xldio3) with the goals to identify specific chemical inhibitors of Xldio3, to evaluate cross-species sensitivity and explore whether the human assay results are predictive of the amphibian. We identified a subset of 356 chemicals screened against hDIO3 to test against Xldio3, initially at a single concentration (200 μM), and further tested 79 in concentration-response mode.

View Article and Find Full Text PDF

We previously characterized the arginine vasotocin receptor sequences in the jawless vertebrate sea lamprey. These gene and protein sequences provide clues to the origins of the various arginine vasopressin and oxytocin receptor family members in jawed vertebrates. However, orthological relationships between the jawless and jawed receptors is unclear.

View Article and Find Full Text PDF

The jawless vertebrate sea lamprey (Petromyzon marinus) genome has a different structure from both invertebrates and jawed vertebrates featuring high guanine-cytosine (GC) content. This raises the question of whether DNA methylation of cytosine-guanine (CpG) dinucleotides could function to regulate lamprey gene transcription. We previously characterized a lamprey arginine vasotocin (AVT) receptor gene (Pm807) possessing characteristics of both arginine vasopressin (AVP) V1A and oxytocin (OXT) receptor genes of jawed vertebrates.

View Article and Find Full Text PDF

The sea lamprey (Petromyzon marinus) is a jawless vertebrate at an evolutionary nexus between invertebrates and jawed vertebrates. Lampreys are known to possess the arginine vasotocin (AVT) hormone utilized by all non-mammalian vertebrates. We postulated that the lamprey would possess AVT receptor orthologs of predecessors to the arginine vasopressin (AVP)/oxytocin (OXT) family of G protein-coupled receptors found in mammals, providing insights into the origins of the mammalian V1A, V1B, V2 and OXT receptors.

View Article and Find Full Text PDF