Publications by authors named "Sally M Yacout"

Purpose: It is widely accepted that RPE melanin has a protective effect against oxidative damage in RPE cells. It is possible that an additional protective characteristic of melanin is the ability to modulate RPE cell immune response. In this study, in vitro modeling was used to probe the relationship between RPE pigmentation and immune response by monitoring IL-6 expression and secretion in calf melanin pigmented ARPE-19 cells seeded onto glycated extracellular matrix as a stressor.

View Article and Find Full Text PDF

Age-related macular degeneration (AMD) is a disease characterized by degenerative changes in the retinal pigment epithelium and Bruch's membrane. Inflammation is considered a major risk factor for the development and progression of AMD. Nitrite is a potent byproduct of inflammation and has been detected at elevated concentrations in AMD donor tissue.

View Article and Find Full Text PDF

With increasing age, there is an observable loss of melanin in retinal pigment epithelial (RPE) cells. It is possible that degradation of the pigment contributes to the pathogenesis of retinal disease, as the cellular antioxidant material is depleted. Functionally, intact melanin maintains protective qualities, while oxidative degradation of melanin promotes reactive oxygen species (ROS) generation and formation of metabolic byproducts, such as melanolipofuscin.

View Article and Find Full Text PDF

The retinal pigment epithelium (RPE) is a highly metabolic layer of postmitotic cells lining Bruch's membrane in the retina. While these cells contain endogenous photosensitizers that mediate blue light-induced damage, it has also been shown that blue light exposure damages mitochondrial DNA in RPE cells resulting in mitochondrial dysfunction and unregulated generation of reactive oxygen species (ROS). As RPE cells are postmitotic, it is imperative to decrease oxidative stress to these cells and preserve function.

View Article and Find Full Text PDF