Optical mapping, with membrane-bound, voltage-sensitive dyes, is widely used for in vitro recording of cardiac electrical activity. The spatial registration of such maps is lost when the heart moves with respect to a fixed photodetector array and contraction can generate substantial artifact if background fluorescence is not uniformly distributed. While motion artifact is commonly suppressed with electromechanical uncoupling agents, there are circumstances where these are undesirable.
View Article and Find Full Text PDFRationale: Slow nonuniform electric propagation in the border zone (BZ) of a healed myocardial infarct (MI) can give rise to reentrant arrhythmia. The extent to which this is influenced by structural rather than cellular electric remodeling is unclear.
Objective: To determine whether structural remodeling alone in the infarct BZ could provide a substrate for re-entry by (i) characterizing the 3-dimensional (3D) structure of the myocardium surrounding a healed MI at high spatial resolution and (ii) modeling electric activation on this structure.