Publications by authors named "Sally Durgerian"

Article Synopsis
  • BMI is a key lifestyle factor linked to dementia risk, but its relationship with APOE ɛ4 gene status and cognitive decline in healthy older adults is less understood.
  • A study of 1,289 cognitively healthy elders found that APOE ɛ4 carriers had a higher conversion rate to mild cognitive impairment (MCI) or dementia after five years compared to noncarriers.
  • The research concluded that only a decline in BMI over five years significantly predicted cognitive decline in APOE ɛ4 carriers, suggesting weight maintenance might be crucial for cognitive health in those at genetic risk for Alzheimer's disease.
View Article and Find Full Text PDF

Objective: The Apolipoprotein (APOE) ε4 allele increases the risk for mild cognitive impairment (MCI) and dementia, but not all carriers develop MCI/dementia. The purpose of this exploratory study was to determine if early and subtle preclinical signs of cognitive dysfunction and medial temporal lobe atrophy are observed in cognitively intact ε4 carriers who subsequently develop MCI.

Methods: Twenty-nine healthy, cognitively intact ε4 carriers (ε3/ε4 heterozygotes; ages 65-85) underwent neuropsychological testing and MRI-based measurements of medial temporal volumes over a 5-year follow-up interval; data were converted to z-scores based on a non-carrier group consisting of 17 ε3/ε3 homozygotes.

View Article and Find Full Text PDF

Objective: The apolipoprotein E (APOE) ε4 allele is the most important genetic risk factor for late-onset Alzheimer's disease. Many ε4 carriers, however, never develop Alzheimer's disease. The purpose of this study is to characterize the variability in phenotypic expression of the ε4 allele, as measured by the longitudinal trajectory of cognitive test scores and MRI brain volumes, in cognitively intact elders.

View Article and Find Full Text PDF

Introduction: Intraindividual variability (IIV) in motor performance has been shown to predict future cognitive decline. The apolipoprotein E-epsilon 4 (APOE-ε4) allele is also a well-established risk factor for memory decline. Here, we present novel findings examining the influence of the APOE-ε4 allele on the performance of asymptomatic healthy elders in comparison to individuals with amnestic MCI (aMCI) on a fine motor synchronization, paced finger-tapping task (PFTT).

View Article and Find Full Text PDF

Objectives: White matter (WM) integrity within the mesial temporal lobe (MTL) is important for episodic memory (EM) functioning. The current study investigated the ability of diffusion tensor imaging (DTI) in MTL WM tracts to predict 3-year changes in EM performance in healthy elders at disproportionately higher genetic risk for Alzheimer's disease (AD).

Methods: Fifty-one cognitively intact elders (52% with family history (FH) of dementia and 33% possessing an Apolipoprotein E ε4 allelle) were administered the Rey Auditory Verbal Learning Test (RAVLT) at study entry and at 3-year follow-up.

View Article and Find Full Text PDF

Neuropathological changes associated with Alzheimer's disease (AD) precede symptom onset by more than a decade. Possession of an apolipoprotein E (APOE) ɛ4 allele is the strongest genetic risk factor for late onset AD. Cross-sectional studies of cognitively intact elders have noted smaller hippocampal/medial temporal volumes in ɛ4 carriers (ɛ4+) compared to ɛ4 non-carriers (ɛ4-).

View Article and Find Full Text PDF

Objectives: Diffusivity in white-matter tracts is abnormal throughout the brain in cross-sectional studies of prodromal Huntington's disease. To date, longitudinal changes have not been observed. The present study investigated cross-sectional and longitudinal changes in white-matter diffusivity in relationship to the phase of prodromal Huntington's progression, and compared them with changes in brain volumes and clinical variables that track disease progression.

View Article and Find Full Text PDF

Modulation of selective attention appears to be under the guidance of a cluster of distinct task-control networks, the frontroparietal (FPN) and cingulo-opercular (CON). Yet, their role in mediating the relationship between task perceptual load and presence/absence of distraction in the auditory modality is unclear. Here, we examined this interaction using functional magnetic resonance imaging (fMRI) and an auditory signal detection task.

View Article and Find Full Text PDF

Older adult apolipoprotein-E epsilon 4 (APOE-ε4) allele carriers vary considerably in the expression of clinical symptoms of Alzheimer's disease (AD), suggesting that lifestyle or other factors may offer protection from AD-related neurodegeneration. We recently reported that physically active APOE-ε4 allele carriers exhibit a stable cognitive trajectory and protection from hippocampal atrophy over 18months compared to sedentary ε4 allele carriers. The aim of this study was to examine the interactions between genetic risk for AD and physical activity (PA) on white matter (WM) tract integrity, using diffusion tensor imaging (DTI) MRI, in this cohort of healthy older adults (ages of 65 to 89).

View Article and Find Full Text PDF

Mild to moderate traumatic brain injury (TBI) due to blast exposure is frequently diagnosed in veterans returning from the wars in Iraq and Afghanistan. However, it is unclear whether neural damage resulting from blast TBI differs from that found in TBI due to blunt-force trauma (e.g.

View Article and Find Full Text PDF

Cognitive, motor and psychiatric changes in prodromal Huntington's disease have nurtured the emergent need for early interventions. Preventive clinical trials for Huntington's disease, however, are limited by a shortage of suitable measures that could serve as surrogate outcomes. Measures of intrinsic functional connectivity from resting-state functional magnetic resonance imaging are of keen interest.

View Article and Find Full Text PDF

Healthy aging is associated with cognitive declines typically accompanied by increased task-related brain activity in comparison to younger counterparts. The Scaffolding Theory of Aging and Cognition (STAC) (Park and Reuter-Lorenz, 2009; Reuter-Lorenz and Park, 2014) posits that compensatory brain processes are responsible for maintaining normal cognitive performance in older adults, despite accumulation of aging-related neural damage. Cross-sectional studies indicate that cognitively intact elders at genetic risk for Alzheimer's disease (AD) demonstrate patterns of increased brain activity compared to low risk elders, suggesting that compensation represents an early response to AD-associated pathology.

View Article and Find Full Text PDF

Subtle changes in motor function have been observed in individuals with prodromal Huntington disease (prHD), but the underlying neural mechanisms are not well understood nor is the cumulative effect of the disease (disease burden) on functional connectivity. The present study examined the resting-state functional magnetic resonance imaging (rs-fMRI) connectivity of the primary motor cortex (M1) in 16 gene-negative (NEG) controls and 48 gene-positive prHD participants with various levels of disease burden. The results showed that the strength of the left M1 connectivity with the ipsilateral M1 and somatosensory areas decreased as disease burden increased and correlated with motor symptoms.

View Article and Find Full Text PDF

Cognitive changes in the prodromal phase of Huntington disease (prHD) are found in multiple domains, yet their neural bases are not well understood. One component process that supports cognition is inhibitory control. In the present fMRI study, we examined brain circuits involved in response inhibition in 65 prHD participants and 36 gene-negative (NEG) controls using the stop signal task (SST).

View Article and Find Full Text PDF

We examined the impact of physical activity (PA) on longitudinal change in hippocampal volume in cognitively intact older adults at varying genetic risk for the sporadic form of Alzheimer's disease (AD). Hippocampal volume was measured from structural magnetic resonance imaging (MRI) scans administered at baseline and at an 18-month follow-up in 97 healthy, cognitively intact older adults. Participants were classified as High or Low PA based on a self-report questionnaire of frequency and intensity of exercise.

View Article and Find Full Text PDF

Introduction: In clinical settings, neuropsychological test performance is traditionally evaluated with total summary scores (TSS). However, recent studies demonstrated that indices of intraindividual variability (IIV) yielded unique information complementing TSS. This 18-month longitudinal study sought to determine whether IIV indices derived from a multitrial list-learning test (the Rey Auditory Verbal Learning Test) provided incremental utility in predicting cognitive decline in older adults compared to TSS.

View Article and Find Full Text PDF

Military personnel involved in Operations Enduring Freedom and Iraqi Freedom (OEF/OIF) commonly experience blast-induced mild to moderate traumatic brain injury (TBI). In this study, we used task-activated functional MRI (fMRI) to determine if blast-related TBI has a differential impact on brain activation in comparison with TBI caused primarily by mechanical forces in civilian settings. Four groups participated: (1) blast-related military TBI (milTBI; n=21); (2) military controls (milCON; n=22); (3) non-blast civilian TBI (civTBI; n=21); and (4) civilian controls (civCON; n=23) with orthopedic injuries.

View Article and Find Full Text PDF
Article Synopsis
  • - The study examined 12 concussed high school football players and their healthy teammates, assessing symptoms, balance, cognition, and brain activity during a working memory task at two time points: 13 hours and 7 weeks post-injury.
  • - Initially, concussed athletes demonstrated typical symptoms and cognitive impairment, but showed significant recovery in both symptoms and cognitive performance by the 7-week mark.
  • - Brain imaging indicated reduced activation in right hemisphere attentional networks right after the concussion, but increased activation in those networks was observed at 7 weeks, correlating with improved cognitive function and symptom relief.
View Article and Find Full Text PDF

Previous studies suggest that task-activated functional magnetic resonance imaging (fMRI) can predict future cognitive decline among healthy older adults. The present fMRI study examined the relative sensitivity of semantic memory (SM) versus episodic memory (EM) activation tasks for predicting cognitive decline. Seventy-eight cognitively intact elders underwent neuropsychological testing at entry and after an 18-month interval, with participants classified as cognitively "Stable" or "Declining" based on ≥ 1.

View Article and Find Full Text PDF

Background: Engagement in cognitively stimulating activities (CA) and leisure time physical activity (PA) have been associated with maintaining cognitive performance and reducing the likelihood of cognitive decline in older adults. However, neural mechanisms underlying protective effects of these lifestyle behaviors are largely unknown. In the current study, we investigated the effect of self-reported PA and CA on hippocampal volume and semantic processing activation during a fame discrimination task, as measured by functional magnetic resonance imaging (fMRI).

View Article and Find Full Text PDF

Extensive research efforts have been directed toward strategies for predicting risk of developing Alzheimer's disease (AD) prior to the appearance of observable symptoms. Existing approaches for early detection of AD vary in terms of their efficacy, invasiveness, and ease of implementation. Several non-invasive magnetic resonance imaging strategies have been developed for predicting decline in cognitively healthy older adults.

View Article and Find Full Text PDF

The effect of physical activity (PA) on functional brain activation for semantic memory in amnestic mild cognitive impairment (aMCI) was examined using event-related functional magnetic resonance imaging during fame discrimination. Significantly greater semantic memory activation occurred in the left caudate of High- versus Low-PA patients, (P=0.03), suggesting PA may enhance memory-related caudate activation in aMCI.

View Article and Find Full Text PDF

Evidence suggests that physical activity (PA) is associated with the maintenance of cognitive function across the lifespan. In contrast, the apolipoproteinE-ε4 (APOE-ε4) allele, a genetic risk factor for Alzheimer's disease (AD), is associated with impaired cognitive function. The objective of this study was to examine the interactive effects of PA and APOE-ε4 on brain activation during memory processing in older (ages 65-85) cognitively intact adults.

View Article and Find Full Text PDF

Few studies have examined the extent to which structural and functional MRI, alone and in combination with genetic biomarkers, can predict future cognitive decline in asymptomatic elders. This prospective study evaluated individual and combined contributions of demographic information, genetic risk, hippocampal volume, and fMRI activation for predicting cognitive decline after an 18-month retest interval. Standardized neuropsychological testing, an fMRI semantic memory task (famous name discrimination), and structural MRI (sMRI) were performed on 78 healthy elders (73% female; mean age = 73 years, range = 65 to 88 years).

View Article and Find Full Text PDF

Person recognition can be accomplished through several modalities (face, name, voice). Lesion, neurophysiology and neuroimaging studies have been conducted in an attempt to determine the similarities and differences in the neural networks associated with person identity via different modality inputs. The current study used event-related functional-MRI in 17 healthy participants to directly compare activation in response to randomly presented famous and non-famous names and faces (25 stimuli in each of the four categories).

View Article and Find Full Text PDF