Long-term, large-scale experimental studies provide critical information about how global change influences communities. When environmental changes are severe, they can trigger abrupt transitions from one community type to another leading to a regime shift. From 2014 to 2016, rocky intertidal habitats in the northeast Pacific Ocean experienced extreme temperatures during a multi-year marine heatwave (MHW) and sharp population declines of the keystone predator Pisaster ochraceus due to sea star wasting disease (SSWD).
View Article and Find Full Text PDFThe ability of non-native species to successfully invade new ecosystems sometimes involves evolutionary processes such as hybridization. Hybridization can produce individuals with superior traits that give them a competitive advantage over their parent species, allowing for rapid spread. Here we assess growth, functional morphology, and species interactions between two non-native beachgrass species (Ammophila arenaria and A.
View Article and Find Full Text PDFForecasting the effects of climate change on the distribution of invasive species can be difficult, because invaders often thrive under novel physical conditions and biotic interactions that differ from those in their native range. In this study, we experimentally examined how rising temperatures and sand burial could alter the abundance and biotic interactions of two invasive beachgrasses, Ammophila arenaria and A. breviligulata, along the U.
View Article and Find Full Text PDFThreatened species are increasingly dependent on conservation investments for persistence and recovery. Information that resource managers could use to evaluate investments-such as the public benefits arising from alternative conservation designs-is typically scarce because conservation benefits arise outside of conventional markets. Moreover, existing studies that measure the public benefits of conserving threatened species often do not measure the benefits from partial gains in species abundance that fall short of official recovery, or the benefits from achieving gains in species abundance that happen earlier in time.
View Article and Find Full Text PDFIn 2014, a DNA-based phylogenetic study confirming the paraphyly of the grass subtribe Sporobolinae proposed the creation of a large monophyletic genus Sporobolus, including (among others) species previously included in the genera Spartina, Calamovilfa, and Sporobolus. Spartina species have contributed substantially (and continue contributing) to our knowledge in multiple disciplines, including ecology, evolutionary biology, molecular biology, biogeography, experimental ecology, biological invasions, environmental management, restoration ecology, history, economics, and sociology. There is no rationale so compelling to subsume the name Spartina as a subgenus that could rival the striking, global iconic history and use of the name Spartina for over 200 yr.
View Article and Find Full Text PDFUnderstanding the relative roles of species interactions and environmental factors in structuring communities has historically focused on local scales where manipulative experiments are possible. However, recent interest in predicting the effects of climate change and species invasions has spurred increasing attention to processes occurring at larger spatial and temporal scales. The "meta-ecosystem" approach is an ideal framework for integrating processes operating at multiple scales as it explicitly considers the influence of local biotic interactions and regional flows of energy, materials, and organisms on community structure.
View Article and Find Full Text PDFDecades of research have demonstrated that many calcifying species are negatively affected by ocean acidification, a major anthropogenic threat in marine ecosystems. However, even closely related species may exhibit different responses to ocean acidification and less is known about the drivers that shape such variation in different species. Here, we examine the drivers of physiological performance under ocean acidification in a group of five species of turf-forming coralline algae.
View Article and Find Full Text PDFPrevious work on the US Atlantic coast has generally shown that coastal foredunes are dominated by two dune grass species, (American beachgrass) and (sea oats). From Virginia northward, dominates, while is the dominant grass south of Virginia. Previous work suggests that these grasses influence the shape of coastal foredunes in species-specific ways, and that they respond differently to environmental stressors; thus, it is important to know which species dominates a given dune system.
View Article and Find Full Text PDFThe difficulty of experimentally quantifying non-trophic species interactions has long troubled ecologists. Increasingly, a new application of the classic "checkerboard distribution" approach is used to infer interactions by examining the pairwise frequency at which species are found to spatially co-occur. However, the link between spatial associations, as estimated from observational co-occurrence, and species interactions has not been tested.
View Article and Find Full Text PDFKnowledge of nutrient pathways and their resulting ecological interactions can alleviate numerous environmental problems associated with nutrient increases in both natural and managed systems. Although not unique, coastal systems are particularly prone to complex ecological interactions resulting from nutrient inputs from both the land and sea. Nutrient inputs to coastal systems often spur ulvoid macroalgal blooms, with negative consequences for seagrasses, primarily through shading, as well as through changes in local biogeochemistry.
View Article and Find Full Text PDFBiophysical feedbacks between vegetation and sediment are important for forming and modifying landscape features and their ecosystem services. These feedbacks are especially important where landscape features differ in their provision of ecosystem services. For example, the shape of coastal foredunes, a product of both physical and biological forces, determines their ability to protect communities from rising seas and changing patterns of storminess.
View Article and Find Full Text PDFInvasive species can alter the succession of ecological communities because they are often adapted to the disturbed conditions that initiate succession. The extent to which this occurs may depend on how widely they are distributed across environmental gradients and how long they persist over the course of succession. We focus on plant communities of the USA Pacific Northwest coastal dunes, where disturbance is characterized by changes in sediment supply, and the plant community is dominated by two introduced grasses--the long-established Ammophila arenaria and the currently invading A.
View Article and Find Full Text PDFThe world's coastal habitats are critical to human well-being, but are also highly sensitive to human habitat alterations and climate change. In particular, global climate is increasing sea levels and potentially altering storm intensities, which may result in increased risk of flooding in coastal areas. In the Pacific Northwest (USA), coastal dunes that protect the coast from flooding are largely the product of a grass introduced from Europe over a century ago (Ammophila arenaria).
View Article and Find Full Text PDFVegetation at the aquatic-terrestrial interface can alter landscape features through its growth and interactions with sediment and fluids. Even similar species may impart different effects due to variation in their interactions and feedbacks with the environment. Consequently, replacement of one engineering species by another can cause significant change in the physical environment.
View Article and Find Full Text PDFAlthough positive species interactions are ubiquitous in nature, theory has generally focused on the role of negative interactions to explain patterns of species diversity. Here, we incorporate recruitment facilitation, a positive interaction prevalent in marine and terrestrial systems, into a metacommunity framework to assess how the interplay between colonisation, competition and facilitation mediates coexistence. We show that when subordinate species facilitate the recruitment of dominant species, multi-species metacommunities can persist stably even if the colonisation rate of the dominant species is greater than that of the subordinate species.
View Article and Find Full Text PDFEcosystem-based management is logistically and politically challenging because ecosystems are inherently complex and management decisions affect a multitude of groups. Coastal ecosystems, which lie at the interface between marine and terrestrial ecosystems and provide an array of ecosystem services to different groups, aptly illustrate these challenges. Successful ecosystem-based management of coastal ecosystems requires incorporating scientific information and the knowledge and views of interested parties into the decision-making process.
View Article and Find Full Text PDFMarine protected areas (MPAs), including no-take marine reserves (MRs), play an important role in the conservation of marine biodiversity. We document the status of MPAs and MRs in Latin America and the Caribbean, where little has been reported on the scope of such protection. Our survey of protected area databases, published and unpublished literature, and Internet searches yielded information from 30 countries and 12 overseas territories.
View Article and Find Full Text PDFA common assumption is that ecosystem services respond linearly to changes in habitat size. This assumption leads frequently to an "all or none" choice of either preserving coastal habitats or converting them to human use. However, our survey of wave attenuation data from field studies of mangroves, salt marshes, seagrass beds, nearshore coral reefs, and sand dunes reveals that these relationships are rarely linear.
View Article and Find Full Text PDFNutrients can structure communities by influencing both plant interactions and plant herbivore interactions, though rarely do studies integrate these processes. In this study we examined how nitrogen fertilization influenced (1) the positive interaction between the marsh elder, Iva frutescens, and the black rush, Juncusgerardi, and (2) the quality of Iva as a host plant for the aphid, Uroleuconambrosiae. Previous studies have shown that by mitigating soil salt accumulation and hypoxia, Juncus is essential to the survival of Iva and its aphid herbivore at mid-marsh elevations.
View Article and Find Full Text PDF