Publications by authors named "Sally Crane"

Hydrocarbon contaminated soils resulting from human activities pose a risk to the natural environment, including in the Arctic and Antarctic. Engineered biopiles constructed at Casey Station, Antarctica, have proven to be an effective strategy for remediating hydrocarbon contaminated soils, with active ex-situ remediation resulting in significant reductions in hydrocarbons, even in the extreme Antarctic climate. However, the use of urea-based fertilisers, whilst providing a nitrogen source for bioremediation, has also altered the natural soil chemistry leading to increases in pH, ammonium and nitrite.

View Article and Find Full Text PDF

Microorganisms comprise the bulk of biodiversity and biomass in Antarctic terrestrial ecosystems. To effectively protect and manage the Antarctic environment from anthropogenic impacts including contamination, the response and recovery of microbial communities should be included in soil remediation efficacy and environmental risk assessments. This is the first investigation into the microbial dynamics associated with large scale bioremediation of hydrocarbon contaminated soil in Antarctica.

View Article and Find Full Text PDF

Background: Resident soil microbiota play key roles in sustaining the core ecosystem processes of terrestrial Antarctica, often involving unique taxa with novel functional traits. However, the full scope of biodiversity and the niche-neutral processes underlying these communities remain unclear. In this study, we combine multivariate analyses, co-occurrence networks and fitted species abundance distributions on an extensive set of bacterial, micro-eukaryote and archaeal amplicon sequencing data to unravel soil microbiome patterns of nine sites across two east Antarctic regions, the Vestfold Hills and Windmill Islands.

View Article and Find Full Text PDF

Microorganisms are useful biological indicators of toxicity and play a key role in the functioning of healthy soils. In this study, we investigated the residual toxicity of hydrocarbons in aged contaminated soils and determined the extent of microbial community recovery during in-situ bioremediation at subantarctic Macquarie Island. Previously identified microbial indicators of hydrocarbon toxicity were used to understand interactions between hydrocarbon concentrations, soil physicochemical parameters and the microbial community.

View Article and Find Full Text PDF