Publications by authors named "Sally Carter"

INTRODUCTION Life expectancy in patients with schizophrenia is 15-20 years less than the general population. A dominant cause of morbidity and mortality in these patients is cardiovascular disease. Adverse consequences of modifiable cardiovascular risk factors can be reduced by regular monitoring of metabolic outcomes and intervention if required.

View Article and Find Full Text PDF

Topical 1,25-dihydroxyvitamin D (1,25D) and other vitamin D compounds have been shown to protect skin from damage by ultraviolet radiation (UVR) in a process that requires the vitamin D receptor. Yet, while mice which do not express the vitamin D receptor are more susceptible to photocarcinogenesis, mice unable to 1α-hydroxylate 25-hydroxyvitamin D to form 1,25D do not show increased susceptibility to UVR-induced skin tumors. A possible explanation is that an alternative pathway, which does not involve 1α-hydroxylation, may produce photoprotective compounds from vitamin D.

View Article and Find Full Text PDF

Vitamin D is primarily produced by a photochemical reaction in skin, using the energy of ultraviolet B radiation. Ultraviolet radiation in sunlight is also responsible for several types of DNA damage, immunosuppression and photoaging. A number of adaptive responses are known to occur in skin to increasing UV exposure, including increased pigmentation, increased thickness of the cornified layer of skin and upregulation of DNA repair pathways.

View Article and Find Full Text PDF

As skin cancer is one of the most costly health issues in many countries, particularly in Australia, the possibility that vitamin D compounds might contribute to prevention of this disease is becoming increasingly more attractive to researchers and health communities. In this article, important epidemiologic, mechanistic and experimental data supporting the chemopreventive potential of several vitamin D-related compounds are explored. Evidence of photoprotection by the active hormone, 1α,25dihydroxyvitamin D3, as well as a derivative of an over-irradiation product, lumisterol, a fluorinated analog and bufalin, a potential vitamin D-like compound, are provided.

View Article and Find Full Text PDF

Exposure to sunlight is the major cause of skin cancer. Ultraviolet radiation (UV) from the sun causes damage to DNA by direct absorption and can cause skin cell death. UV also causes production of reactive oxygen species that may interact with DNA to indirectly cause oxidative DNA damage.

View Article and Find Full Text PDF

Intracranial infection of mice with lymphocytic choriomeningitis virus (LCMV) results in a lethal neurological disease termed lymphocytic choriomeningitis (LCM) that is mediated by antiviral CD8(+) T cells. Previous studies have implicated the chemokine receptor CXCR3 and its ligand CXCL10 in CD8(+) T cell trafficking in the brain and in the lethal disease following intracranial infection of mice with the LCMV-Traub strain. Here we investigated the role of CXCR3 in LCM following intracranial infection of mice with the LCMV-Armstrong strain.

View Article and Find Full Text PDF

Cerebral malaria (CM) can be a fatal manifestation of Plasmodium falciparum infection. Using murine models of malaria, we found much greater up-regulation of a number of chemokine mRNAs, including those for CXCR3 and its ligands, in the brain during fatal murine CM (FMCM) than in a model of non-CM. Expression of CXCL9 and CXCL10 RNA was localized predominantly to the cerebral microvessels and in adjacent glial cells, while expression of CCL5 was restricted mainly to infiltrating lymphocytes.

View Article and Find Full Text PDF

The chemokines CXCL9 and CXCL10 bind to the common receptor CXCR3 and are implicated in the pathogenesis of T-cell-mediated immunity in the central nervous system (CNS). Here we examined the temporal and spatial regulation of the Cxcl9 and Cxcl10 genes in the CNS of mice with myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) and by glial cells in vitro. During peak disease the levels of CXCL9 and CXCL10 mRNA and protein were increased significantly in the cerebellum and spinal cord but were reduced during the recovery phase.

View Article and Find Full Text PDF

The chemokine receptor CXCR3 promotes the trafficking of activated T and NK cells in response to three ligands, CXCL9, CXCL10, and CXCL11. Although these chemokines are produced in the CNS in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE), their role in the pathogenesis of CNS autoimmunity is unresolved. We examined the function of CXCR3 signaling in EAE using mice that were deficient for CXCR3 (CXCR3(-/-)).

View Article and Find Full Text PDF