Publications by authors named "Sally Amundson"

A realistic exposure to ionizing radiation (IR) from an improvised nuclear device will likely include individuals who are partially shielded from the initial blast delivered at a very high dose rate (VHDR). As different tissues have varying levels of radiosensitivity, e.g.

View Article and Find Full Text PDF

In large-scale radiation exposure events, the ability to triage potential victims by the received radiation dosage is crucial. This can be evaluated by radiation-induced biological changes. Radiation-responsive mRNA is a class of biomarkers that has been explored for dose-dependency with methods such as RT-qPCR.

View Article and Find Full Text PDF

Galactic cosmic radiation (GCR) is one of the most serious risks posed to astronauts during missions to the Moon and Mars. Experimental models capable of recapitulating human physiology are critical to understanding the effects of radiation on human organs and developing radioprotective measures against space travel exposures. The effects of systemic radiation are studied using a multi-organ-on-a-chip (multi-OoC) platform containing engineered tissue models of human bone marrow (site of hematopoiesis and acute radiation damage), cardiac muscle (site of chronic radiation damage) and liver (site of metabolism), linked by vascular circulation with an endothelial barrier separating individual tissue chambers from the vascular perfusate.

View Article and Find Full Text PDF

To improve particle radiotherapy, we need a better understanding of the biology of radiation effects, particularly in heavy ion radiation therapy, where global responses are observed despite energy deposition in only a subset of cells. Here, we integrated a high-speed swept confocally-aligned planar excitation (SCAPE) microscope into a focused ion beam irradiation platform to allow real-time 3D structural and functional imaging of living biological samples during and after irradiation. We demonstrate dynamic imaging of the acute effects of irradiation on 3D cultures of U87 human glioblastoma cells, revealing characteristic changes in cellular movement and intracellular calcium signaling following ionizing irradiation.

View Article and Find Full Text PDF

The cytokinesis-block micronucleus (CBMN) assay is an established method for assessing chromosome damage in human peripheral blood lymphocytes resulting from exposure to genotoxic agents such as ionizing radiation. The objective of this study was to measure cytogenetic DNA damage and hematology parameters in vivo based on MN frequency in peripheral blood lymphocytes (PBLs) from adult and pediatric leukemia patients undergoing hematopoietic stem cell transplantation preceded by total body irradiation (TBI) as part of the conditioning regimen. CBMN assay cultures were prepared from fresh blood samples collected before and at 4 and 24 h after the start of TBI, corresponding to doses of 1.

View Article and Find Full Text PDF

Cosmic radiation is the most serious risk that will be encountered during the planned missions to the Moon and Mars. There is a compelling need to understand the effects, safety thresholds, and mechanisms of radiation damage in human tissues, in order to develop measures for radiation protection during extended space travel. As animal models fail to recapitulate the molecular changes in astronauts, engineered human tissues and "organs-on-chips" are valuable tools for studying effects of radiation in vitro.

View Article and Find Full Text PDF

Purpose: Development of an integrated time and dose model to explore the dynamics of gene expression alterations and identify biomarkers for biodosimetry following low- and high-dose irradiations at high dose rate.

Material And Methods: We utilized multiple transcriptome datasets (GSE8917, GSE43151, and GSE23515) from Gene Expression Omnibus (GEO) for identifying candidate biological dosimeters. A linear mixed-effects model with random intercept was used to explore the dose-time dynamics of transcriptional responses and to functionally characterize the time- and dose-dependent changes in gene expression.

View Article and Find Full Text PDF
Article Synopsis
  • High-dose radiation exposure results in severe health consequences, including radiation syndromes with acute and long-term organ damage, leading to increased morbidity and mortality in affected individuals.
  • Radiation biodosimetry using gene expression analysis in blood samples can effectively detect radiation exposure and predict potential injuries, but factors like chronic inflammation can complicate these predictions.
  • A study on GADD45A-deficient mice showed that their pre-existing inflammation affects radiation biodosimetry, revealing that these mice exhibited more severe effects from radiation exposure, indicating a link between GADD45A and enhanced radiation sensitivity.
View Article and Find Full Text PDF
Article Synopsis
  • There is a risk of many people being exposed to harmful radiation, either by accident or on purpose, which could lead to serious health problems.
  • Scientists are exploring new ways to measure how much radiation each person absorbs using samples from their body, like blood.
  • By using computers and different types of data from experiments on mice, researchers found that combining this data can help better understand and predict the effects of radiation exposure.
View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on developing new biodosimetry tests to accurately measure radiation exposure levels after nuclear accidents or attacks, emphasizing the need for reliable dose reconstruction regardless of exposure complexity.
  • - Researchers examined the effects of varying radiation doses (0, 3, and 8 Gy) on mouse urine and serum metabolite profiles over two days following exposure, noting that both genders showed similar changes except for a few specific metabolites.
  • - Results indicated that specific metabolite panels could effectively differentiate between lethal and sublethal radiation doses, suggesting potential for accurate identification of affected individuals in emergency situations.
View Article and Find Full Text PDF

Background: Non-human primates, such as Rhesus macaques, are a powerful model for studies of the cellular and physiological effects of radiation, development of radiation biodosimetry, and for understanding the impact of radiation on human health. Here, we study the effects of 4 Gy total body irradiation (TBI) at the molecular level out to 28 days and at the cytogenetic level out to 56 days after exposure. We combine the global transcriptomic and proteomic responses in peripheral whole blood to assess the impact of acute TBI exposure at extended times post irradiation.

View Article and Find Full Text PDF

Blood-based gene expression profiles that can reconstruct radiation exposure are being developed as a practical approach to radiation biodosimetry. However, age and sex could potentially limit the accuracy of the approach. In this study, we determined the impact of age on the peripheral blood cell gene expression profile of female mice exposed to radiation and identified differences and similarities with a previously obtained transcriptomic signature of male mice.

View Article and Find Full Text PDF

In the search for biological markers after a large-scale exposure of the human population to radiation, gene expression is a sensitive endpoint easily translatable to in-field high throughput applications. Primarily, the ex-vivo irradiated healthy human blood model has been used to generate available gene expression datasets. This model has limitations i.

View Article and Find Full Text PDF

High-throughput biodosimetry methods to determine exposure to ionizing radiation (IR) that can also be easily scaled to multiple testing sites in emergency situations are needed in the event of malicious attacks or nuclear accidents that may involve a substantial number of civilians. In the event of an improvised nuclear device (IND), a complex IR exposure will have a very high-dose rate (VHDR) component from an initial blast. We have previously addressed low-dose rate (LDR, ≤1 Gy/day) exposures from internal emitters on biofluid small molecule signatures, but further research on the VHDR component of the initial blast is required.

View Article and Find Full Text PDF

Radiation biodosimetry based on transcriptomic analysis of peripheral blood is a valuable tool to detect radiation exposure after a radiological/nuclear event and obtain useful biological information that could predict tissue and organismal injury. However, confounding factors, including chronic inflammation or immune suppression, can potentially obscure the predictive power of the method. Members of the p38 mitogen-activated protein kinase (MAPK) family respond to pro-inflammatory signals and environmental stresses, whereas genetic ablation of the p38 signaling pathway in mice leads to reduced susceptibility to collagen-induced arthritis and experimental autoimmune encephalomyelitis that model human rheumatoid arthritis and multiple sclerosis, respectively.

View Article and Find Full Text PDF
Article Synopsis
  • In the event of a nuclear or radiological incident, early diagnostic tools are needed to identify individuals based on their level of radiation exposure, especially for those who need urgent medical attention.
  • Radiation-induced gene expression changes can serve as biomarkers to assess exposure levels and predict potential health effects well into the future.
  • At the ConRad 2021 conference, experts discussed advancements in using these gene expression markers for retrospective biodosimetry, predicting acute health impacts, and developing efficient diagnostic platforms.
View Article and Find Full Text PDF

Purpose: This article will briefly review the origins and evolution of functional genomics, first describing the experimental technology, and then some of the approaches applied to data analysis and visualization. It will emphasize application of functional genomics to radiation biology, using examples from the author's work to illustrate several key types of analysis. It concludes with a look at non-coding RNA, alternative reading of the genome, and single-cell transcriptomics, some of the innovative areas that may help to shape future research in radiation biology and oncology.

View Article and Find Full Text PDF

An important component of ionizing radiation (IR) exposure after a radiological incident may include low-dose rate (LDR) exposures either externally or internally, such as from Cs deposition. In this study, a novel irradiation system, VAriable Dose-rate External Cs irradiatoR (VADER), was used to expose male and female mice to a variable LDR irradiation over a 30 d time span to simulate fall-out-type exposures in addition to biofluid collection from a reference dose rate (0.8 Gy/min).

View Article and Find Full Text PDF

As a radiation biodosimetry tool, gene expression profiling is being developed using mouse and human peripheral blood models. The impact of dose, dose-rate, and radiation quality has been studied with the goal of predicting radiological tissue injury. In this study, we determined the impact of aging on the gene expression profile of blood from mice exposed to radiation.

View Article and Find Full Text PDF

Purpose: Transcriptomic-based approaches are being developed to meet the needs for large-scale radiation dose and injury assessment and provide population triage following a radiological or nuclear event. This review provides background and definition of the need for new biodosimetry approaches, and summarizes the major advances in this field. It discusses some of the major model systems used in gene signature development, and highlights some of the remaining challenges, including individual variation in gene expression, potential confounding factors, and accounting for the complexity of realistic exposure scenarios.

View Article and Find Full Text PDF

In the long term, Cs is probably the most biologically important agent released in many accidental (or malicious) radiation disasters. It can enter the food chain, and be consumed, or, if present in the environment (e.g.

View Article and Find Full Text PDF

Inhalation and ingestion of 137Cs and other long-lived radionuclides can occur after large-scale accidental or malicious radioactive contamination incidents, resulting in a complex temporal pattern of radiation dose/dose rate, influenced by radionuclide pharmacokinetics and chemical properties. High-throughput radiation biodosimetry techniques for such internal exposure are needed to assess potential risks of short-term toxicity and delayed effects (e.g.

View Article and Find Full Text PDF

Internal contamination by radionuclides may constitute a major source of exposure and biological damage after radiation accidents and potentially in a dirty bomb or improvised nuclear device scenario. We injected male C57BL/6 mice with radiolabeled cesium chloride solution (137CsCl) to evaluate the biological effects of varying cumulative doses and dose rates in a two-week study. Injection activities of 137CsCl were 5.

View Article and Find Full Text PDF