Publications by authors named "Sally A Penfold"

Glucagon like peptide-1 (GLP-1) is a hormone produced and released by cells of the gastrointestinal tract following meal ingestion. GLP-1 receptor agonists (GLP-1RA) exhibit kidney-protective actions through poorly understood mechanisms. Here we interrogated whether the receptor for advanced glycation end products (RAGE) plays a role in mediating the actions of GLP-1 on inflammation and diabetic kidney disease.

View Article and Find Full Text PDF

Aims: The accumulation of advanced glycation end products is implicated in the development and progression of diabetic kidney disease. No study has examined whether stimulating advanced glycation clearance via receptor manipulation is reno-protective in diabetes. Podocytes, which are early contributors to diabetic kidney disease and could be a target for reno-protection.

View Article and Find Full Text PDF

Intake of processed foods has increased markedly over the past decades, coinciding with increased microvascular diseases such as chronic kidney disease (CKD) and diabetes. Here, we show in rodent models that long-term consumption of a processed diet drives intestinal barrier permeability and an increased risk of CKD. Inhibition of the advanced glycation pathway, which generates Maillard reaction products within foods upon thermal processing, reversed kidney injury.

View Article and Find Full Text PDF

Scope: This study evaluates the effects of a chronic high protein diet (HPD) on kidney injury, intestinal permeability and gut microbiota perturbations in a mouse model.

Method And Results: Mice are fed a diet containing either 20% or 52% energy from protein for 24 weeks; protein displaced an equivalent amount of wheat starch. The HPD does not alter glycemic control or body weight.

View Article and Find Full Text PDF

The accumulation of advanced glycation end products (AGEs) have been implicated in the development and progression of diabetic kidney disease (DKD). There has been interest in investigating the potential of AGE clearance receptors, such as oligosaccharyltransferase-48 kDa subunit (OST48) to prevent the detrimental effects of excess AGE accumulation seen in the diabetic kidney. Here the objective of the study was to increase the expression of OST48 to examine if this slowed the development of DKD by facilitating the clearance of AGEs.

View Article and Find Full Text PDF

Patients with diabetic hypertensive nephropathy have accelerated disease progression. Diabetes and hypertension have both been associated with changes in renal catecholamines and reactive oxygen species. With a specific focus on renal catecholamines and oxidative stress we examined a combined model of hypertension and diabetes using normotensive BPN/3J and hypertensive BPH/2J Schlager mice.

View Article and Find Full Text PDF

Oxidative phosphorylation (OXPHOS) drives ATP production by mitochondria, which are dynamic organelles, constantly fusing and dividing to maintain kidney homoeostasis. In diabetic kidney disease (DKD), mitochondria appear dysfunctional, but the temporal development of diabetes-induced adaptations in mitochondrial structure and bioenergetics have not been previously documented. In the present study, we map the changes in mitochondrial dynamics and function in rat kidney mitochondria at 4, 8, 16 and 32 weeks of diabetes.

View Article and Find Full Text PDF

Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein with dual roles in redox signaling and programmed cell death. Deficiency in AIF is known to result in defective oxidative phosphorylation (OXPHOS), via loss of complex I activity and assembly in other tissues. Because the kidney relies on OXPHOS for metabolic homeostasis, we hypothesized that a decrease in AIF would result in chronic kidney disease (CKD).

View Article and Find Full Text PDF

Aims: Defects in the activity of enzyme complexes of the mitochondrial respiratory chain are thought to be responsible for several disorders, including renal impairment. Gene mutations that result in complex I deficiency are the most common oxidative phosphorylation disorders in humans. To determine whether an abnormality in mitochondrial complex I per se is associated with development of renal disease, mice with a knockdown of the complex I gene, Ndufs6 were studied.

View Article and Find Full Text PDF

Glycaemic control, reduction of blood pressure using agents that block the renin-angiotensin system and control of dyslipidaemia are the major strategies used in the clinical management of patients with diabetes mellitus. Each of these approaches interrupts a number of pathological pathways, which directly contributes to the vascular complications of diabetes mellitus, including renal disease, blindness, neuropathy and cardiovascular disease. However, research published over the past few years has indicated that many of the pathological pathways important in the development of the vascular complications of diabetes mellitus are equally relevant to the initiation of diabetes mellitus itself.

View Article and Find Full Text PDF

Cardiovascular benefits of ubiquinone have been previously demonstrated, and we administered it as a novel therapy in an experimental model of type 2 diabetic nephropathy. db/db and dbH mice were followed for 10 weeks, after randomization to receive either vehicle or ubiquinone (CoQ10; 10mg/kg/day) orally. db/db mice had elevated urinary albumin excretion rates and albumin:creatinine ratio, not seen in db/db CoQ10-treated mice.

View Article and Find Full Text PDF

Background/aims: The formation of advanced glycation end products (AGEs) is accelerated in patients with diabetic nephropathy. The aim of this study was to ascertain if the urinary excretion of proteins modified by advanced glycation can be used as biomarkers for albuminuria in individuals with type 1 or type 2 diabetes.

Methods: Community-based patients with type 1 (n = 68) or type 2 diabetes (n = 216) attending a diabetes clinic of a tertiary referral hospital were classified as having normoalbuminuria (Normo, albumin excretion rate (AER) <20 μg/min), microalbuminuria (Micro, AER 20-200 μg/min) or macroalbuminuria (Macro, AER ≥200 μg/min).

View Article and Find Full Text PDF

Obesity is highly prevalent in Western populations and is considered a risk factor for the development of renal impairment. Interventions that reduce the tissue burden of advanced glycation end-products (AGEs) have shown promise in stemming the progression of chronic disease. Here we tested if treatments that lower tissue AGE burden in patients and mice would improve obesity-related renal dysfunction.

View Article and Find Full Text PDF

Background: Advanced glycation end-products (AGEs) and their receptors are prominent contributors to diabetic kidney disease.

Methods: Flow cytometry was used to measure the predictive capacity for kidney impairment of the AGE receptors RAGE, AGE-R1, and AGE-R3 on peripheral blood mononuclear cells (PBMCs) in experimental models of type 2 diabetes (T2DM) fed varied AGE containing diets and in obese type 2 diabetic and control human subjects.

Results: Diets high in AGE content fed to diabetic mice decreased cell surface RAGE on PBMCs and in type 2 diabetic patients with renal impairment (RI).

View Article and Find Full Text PDF

The accumulation of advanced glycation end products is thought to be a key factor in the initiation and progression of diabetic nephropathy. Here we determined whether the size of the ligands for the receptor for advanced glycation end products (RAGEs) that were present in the serum of patients with type 2 diabetes modulates their pathogenic potential. Serum was collected from control subjects and patients with type 2 diabetes with varying degrees of renal disease (normo-, micro-, or macroalbuminuria).

View Article and Find Full Text PDF

Decreased gene expression of heat shock protein 72 (HSP72) in skeletal muscle is associated with insulin resistance in humans. We aimed to determine whether HSP72 protein expression in insulin-sensitive tissues is related to criterion standard measures of adiposity and insulin resistance in a young healthy human population free of hyperglycemia. Healthy participants (N = 17; age, 30 ± 3 years) underwent measurement of body composition (dual-energy x-ray absorptiometry), a maximum aerobic capacity test (VO(2max)), an oral glucose tolerance test, and a hyperinsulinemic-euglycemic clamp (M) to access insulin sensitivity.

View Article and Find Full Text PDF

Background: Low plasma high-density lipoprotein (HDL) is associated with elevated cardiovascular risk and aspects of the metabolic syndrome. We hypothesized that HDL modulates glucose metabolism via elevation of plasma insulin and through activation of the key metabolic regulatory enzyme, AMP-activated protein kinase, in skeletal muscle.

Methods And Results: Thirteen patients with type 2 diabetes mellitus received both intravenous reconstituted HDL (rHDL: 80 mg/kg over 4 hours) and placebo on separate days in a double-blind, placebo-controlled crossover study.

View Article and Find Full Text PDF

Damaged mitochondria generate an excess of superoxide, which may mediate tissue injury in diabetes. We hypothesized that in diabetic nephropathy, advanced glycation end-products (AGEs) lead to increases in cytosolic reactive oxygen species (ROS), which facilitate the production of mitochondrial superoxide. In normoglycemic conditions, exposure of primary renal cells to AGEs, transient overexpression of the receptor for AGEs (RAGE) with an adenoviral vector, and infusion of AGEs to healthy rodents each induced renal cytosolic oxidative stress, which led to mitochondrial permeability transition and deficiency of mitochondrial complex I.

View Article and Find Full Text PDF

Objective: Excessive production of reactive oxygen species (ROS) via NADPH oxidase has been implicated in the pathogenesis of diabetic nephropathy. Since NADPH oxidase activation is closely linked to other putative pathways, its interaction with changes in protein kinase C (PKC) and increased advanced glycation was examined.

Research Design And Methods: Streptozotocin-induced diabetic or nondiabetic Sprague Dawley rats were followed for 32 weeks, with groups randomized to no treatment or the NADPH oxidase assembly inhibitor apocynin (15 mg .

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: