Chimeric antigen receptor T (CAR-T) cell immunotherapies have seen success in treating hematological malignancies in recent years; however, the results can be highly variable. Single cell heterogeneity plays a key role in the variable efficacy of CAR-T cell treatments yet is largely unexplored. A major challenge is to understand the killing behavior and phenotype of individual CAR-T cells, which are able to serially kill targets.
View Article and Find Full Text PDFMotivation: Splice variant neoantigens are a potential source of tumor-specific antigen (TSA) that are shared between patients in a variety of cancers, including acute myeloid leukemia. Current tools for genomic prediction of splice variant neoantigens demonstrate promise. However, many tools have not been well validated with simulated and/or wet lab approaches, with no studies published that have presented a targeted immunopeptidome mass spectrometry approach designed specifically for identification of predicted splice variant neoantigens.
View Article and Find Full Text PDFTandem mass spectrometry (MS/MS) is a highly sensitive and selective method for the detection of tumor-associated peptide antigens. These short, nontryptic sequences may lack basic residues, resulting in the formation of predominantly [peptide + H] ions in electrospray. These singly charged ions tend to undergo inefficient dissociation, leading to issues in sequence determination.
View Article and Find Full Text PDFT-cell responses to minor histocompatibility antigens (mHAs) mediate both antitumor immunity (graft-versus-leukemia [GVL]) and graft-versus-host disease (GVHD) in allogeneic stem cell transplant. Identifying mHAs with high allele frequency, tight binding affinity to common HLA molecules, and narrow tissue restriction could enhance immunotherapy against leukemia. Genotyping and HLA allele data from 101 HLA-matched donor-recipient pairs (DRPs) were computationally analyzed to predict both class I and class II mHAs likely to induce either GVL or GVHD.
View Article and Find Full Text PDFJ Gerontol A Biol Sci Med Sci
November 2018
Older adults suffer a disproportionate burden of influenza-related morbidity and mortality typically attributed to defects in the aging immune system collectively known as immunosenescence. While the age-related decline in the adaptive immune system has been well characterized, little is known about how aging affects the principal site of influenza infection-the nasal epithelium. In human nasal epithelial cell cultures (hNECs) from older adults, we found similar or increased levels of cytokines during influenza infection compared with hNECs from younger individuals.
View Article and Find Full Text PDFMicroraft arrays have been used to screen and then isolate adherent and non-adherent cells with very high efficiency and excellent viability; however, manual screening and isolation limits the throughput and utility of the technology. In this work, novel hardware and software were developed to automate the microraft array platform. The developed analysis software identified microrafts on the array with greater than 99% sensitivity and cells on the microrafts with 100% sensitivity.
View Article and Find Full Text PDFThe simultaneous measurement of T cell function with recovery of individual T cells would greatly facilitate characterizing antigen-specific responses both in vivo and in model systems. We have developed a microraft array methodology that automatically measures the ability of individual T cells to kill a population of target cells and viably sorts specific cells into a 96-well plate for expansion. A human T cell culture was generated against the influenza M1p antigen.
View Article and Find Full Text PDFMicroraft arrays were developed to select and separate cells based on a complex phenotype, weak intercellular adhesion, without knowledge of cell-surface markers or intracellular proteins. Since the cells were also not competent to bind to a culture surface, a method to encapsulate nonadherent cells within a gelatin plug on the concave microraft surface was developed, enabling release and collection of the cells without the need for cell attachment to the microraft surface. After microraft collection, the gelatin was liquified to release the cell(s) for culture or analysis.
View Article and Find Full Text PDFWe report a highly sensitive microfluidic assay to detect minimal residual disease (MRD) in patients with acute myeloid leukemia (AML) that samples peripheral blood to search for circulating leukemic cells (CLCs). Antibodies immobilized within three separate microfluidic devices affinity-selected CLC subpopulations directly from peripheral blood without requiring pre-processing. The microfluidic devices targeted CD33, CD34, and CD117 cell surface antigens commonly expressed by AML leukemic cells so that each subpopulation's CLC numbers could be tracked to determine the onset of relapse.
View Article and Find Full Text PDFWe report a novel strategy to enzymatically release affinity-selected cells, such as circulating tumor cells (CTCs), from surfaces with high efficiency (∼90%) while maintaining cell viability (>85%). The strategy utilizes single-stranded DNAs that link a capture antibody to the surfaces of a CTC selection device. The DNA linkers contain a uracil residue that can be cleaved.
View Article and Find Full Text PDFTesting of T cell-based cancer therapeutics often involves measuring cancer antigen-specific T-cell populations with the assumption that they arise from in vivo clonal expansion. This analysis, using peptide/MHC tetramers, is often ambiguous. From a leukemia cell line, we identified a CDK4-derived peptide epitope, UNC-CDK4-1 (ALTPVVVTL), that bound HLA-A*02:01 with high affinity and could induce CD8⁺ T-cell responses in vitro.
View Article and Find Full Text PDFSphingosine kinase (SK) is a promising therapeutic target in a number of cancers, including leukemia. Traditionally, SK has been measured in bulk cell lysates, but this technique obscures the cellular heterogeneity present in this pathway. For this reason, SK activity was measured in single cells loaded with a fluorescent sphingosine reporter.
View Article and Find Full Text PDFWe present a novel microfluidic solid-phase extraction (μSPE) device for the affinity enrichment of biotinylated membrane proteins from whole cell lysates. The device offers features that address challenges currently associated with the extraction and purification of membrane proteins from whole cell lysates, including the ability to release the enriched membrane protein fraction from the extraction surface so that they are available for downstream processing. The extraction bed was fabricated in PMMA using hot embossing and was comprised of 3600 micropillars.
View Article and Find Full Text PDFPurpose: Immunotherapy targeting aberrantly expressed leukemia-associated antigens has shown promise in the management of acute myeloid leukemia (AML). However, because of the heterogeneity and clonal evolution that is a feature of myeloid leukemia, targeting single peptide epitopes has had limited success, highlighting the need for novel antigen discovery. In this study, we characterize the role of the myeloid azurophil granule protease cathepsin G (CG) as a novel target for AML immunotherapy.
View Article and Find Full Text PDFBackground: Minor histocompatibility antigens (mHA) mediate much of the graft vs. leukemia (GvL) effect and graft vs. host disease (GvHD) in patients who undergo allogeneic stem cell transplantation (SCT).
View Article and Find Full Text PDFSignalling through the interleukin (IL)-6 pathway induces proliferation and drug resistance of multiple myeloma cells. We therefore sought to determine whether the IL-6-neutralizing monoclonal antibody siltuximab, formerly CNTO 328, could enhance the activity of melphalan, and to examine some of the mechanisms underlying this interaction. Siltuximab increased the cytotoxicity of melphalan in KAS-6/1, INA-6, ANBL-6, and RPMI 8226 human myeloma cell lines (HMCLs) in an additive-to-synergistic manner, and sensitized resistant RPMI 8226.
View Article and Find Full Text PDFInterleukin (IL)-6-mediated signalling attenuates the anti-myeloma activity of glucocorticoids (GCs). We therefore sought to evaluate whether CNTO 328, an anti-IL-6 monoclonal antibody in clinical development, could enhance the apoptotic activity of dexamethasone (dex) in pre-clinical models of myeloma. CNTO 328 potently increased the cytotoxicity of dex in IL-6-dependent and -independent human myeloma cell lines (HMCLs), including a bortezomib-resistant HMCL.
View Article and Find Full Text PDFProteasome inhibition is a validated strategy for therapy of multiple myeloma, but this disease remains challenging as relapses are common, and often associated with increasing chemoresistance. Moreover, nonspecific proteasome inhibitors such as bortezomib can induce peripheral neuropathy and other toxicities that may compromise the ability to deliver therapy at full doses, thereby decreasing efficacy. One novel approach may be to target the immunoproteasome, a proteasomal variant found predominantly in cells of hematopoietic origin that differs from the constitutive proteasome found in most other cell types.
View Article and Find Full Text PDFPurpose: Inhibition of the proteasome leads to the activation of survival pathways in addition to those that promote cell death. We hypothesized that down-regulation of interleukin-6 (IL-6) signaling using the monoclonal antibody CNTO 328 would enhance the antitumor activity of the proteasome inhibitor bortezomib in multiple myeloma by attenuating inducible chemoresistance.
Experimental Design: The cytotoxicity of bortezomib, CNTO 328, and the combination, along with the associated molecular changes, was assessed in IL-6-dependent and IL-6-independent multiple myeloma cell lines, both in suspension and in the presence of bone marrow stromal cells and in patient-derived myeloma samples.
The 5'-nucleotidases are a family of enzymes that catalyze the dephosphorylation of nucleoside monophosphates and regulate cellular nucleotide and nucleoside levels. While the nucleoside kinases responsible for the initial phosphorylation of salvaged nucleosides have been well studied, many of the catabolic nucleotidases have only recently been cloned and characterized. Aside from maintaining balanced ribo- and deoxyribonucleotide pools, substrate cycles that are formed with kinase and nucleotidase activities are also likely to regulate the activation of nucleoside analogues, a class of anticancer and antiviral agents that rely on the nucleoside kinases for phosphorylation to their active forms.
View Article and Find Full Text PDF