Publications by authors named "Salloum-Asfar S"

Reprogramming human somatic cells into a pluripotent state, achieved through the activation of well-defined transcriptional factors known as OSKM factors, offers significant potential for regenerative medicine. While OSKM factors are a robust reprogramming method, efficiency remains a challenge, with only a fraction of cells undergoing successful reprogramming. To address this, we explored genes related to genomic integrity and cellular survival, focusing on iPSCs (A53T-PD1) that displayed enhanced colony stability.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by three core impairments: impaired communication, impaired reciprocal social interaction, and restricted, repetitive, and stereotypical behavior patterns. Spectrum refers to the heterogeneity of presentation, severity of symptoms, and medical comorbidities associated with ASD. Among the most common underlying medical conditions are attention-deficit/hyperactivity disorder (ADHD), anxiety, depression, epilepsy, digestive disorders, metabolic disorders, and immune disorders.

View Article and Find Full Text PDF

Thyroid hormone (T3) plays a vital role in brain development and its dysregulation can impact behavior, nervous system function, and cognitive development. Large case-cohort studies have associated abnormal maternal T3 during early pregnancy to epilepsy, autism, and attention deficit hyperactivity disorder (ADHD) in children. Recent experimental findings have also shown T3's influence on the fate of neural precursor cells and raise the question of its convergence with embryonic neural progenitors.

View Article and Find Full Text PDF

Somatic cells are reprogrammed with reprogramming factors to generate induced pluripotent stem cells (iPSCs), offering a promising future for disease modeling and treatment by overcoming the limitations of embryonic stem cells. However, this process remains inefficient since only a small percentage of transfected cells can undergo full reprogramming. Introducing miRNAs, such as miR-294 and miR302/3667, with reprogramming factors, has shown to increase iPSC colony formation.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a brain condition characterized by diverse signs and symptoms that appear in early childhood. ASD is also associated with communication deficits and repetitive behavior in affected individuals. Various ASD detection methods have been developed, including neuroimaging modalities and psychological tests.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are membrane vesicles released from cells to the extracellular space, involved in cell-to-cell communication by the horizontal transfer of biomolecules such as proteins and RNA. Because EVs can cross the blood-brain barrier (BBB), circulating through the bloodstream and reflecting the cell of origin in terms of disease prognosis and severity, the contents of plasma EVs provide non-invasive biomarkers for neurological disorders. However, neuronal EV markers in blood plasma remain unclear.

View Article and Find Full Text PDF

Stress granules (SGs) are assemblies of selective messenger RNAs (mRNAs), translation factors, and RNA-binding proteins in small untranslated messenger ribonucleoprotein (mRNP) complexes in the cytoplasm. Evidence indicates that different types of cells have shown different mechanisms to respond to stress and the formation of SGs. In the present work, we investigated how human-induced pluripotent stem cells (hiPSCs/IMR90-1) overcome hyperosmotic stress compared to a cell line that does not harbor pluripotent characteristics (SH-SY5Y cell line).

View Article and Find Full Text PDF

Coronavirus 2019 (COVID-19) is an infectious respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that mainly affects the lungs. COVID-19 symptoms include the presence of fevers, dry coughs, fatigue, sore throat, headaches, diarrhea, and a loss of taste or smell. However, it is understood that SARS-CoV-2 is neurotoxic and neuro-invasive and could enter the central nervous system (CNS) via the hematogenous route or via the peripheral nerve route and causes encephalitis, encephalopathy, and acute disseminated encephalomyelitis (ADEM) in COVID-19 patients.

View Article and Find Full Text PDF
Article Synopsis
  • Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects social interactions, behavior, and communication in children.
  • Researchers created a new induced pluripotent stem cell (iPSC) line, QBRIi013-A, from a 6-year-old girl with ASD and intellectual disability, using a non-integrating Sendai virus.
  • The QBRIi013-A cell line has been fully characterized for its pluripotency and ability to differentiate into various cell types, making it a useful model for studying the biological mechanisms behind ASD.
View Article and Find Full Text PDF
Article Synopsis
  • Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that is challenging to diagnose clinically, especially in differentiating severity levels.
  • Researchers conducted a study that identified specific circulating non-coding RNAs (cir-ncRNAs) in plasma, which are linked to ASD and could serve as potential biomarkers for diagnosis.
  • The findings suggest that these cir-ncRNAs could help create more targeted treatments for individuals with ASD by distinguishing between severe and mild symptoms.
View Article and Find Full Text PDF

Although many factors have been identified and used to enhance the iPSC reprogramming process, its efficiency remains quite low. In addition, reprogramming efficacy has been evidenced to be affected by disease mutations that are present in patient samples. In this study, using RNA-seq platform we have identified and validated the differential gene expression of five transcription factors (TFs) (GBX2, NANOGP8, SP8, PEG3, and ZIC1) that were associated with a remarkable increase in the number of iPSC colonies generated from a patient with Parkinson's disease.

View Article and Find Full Text PDF

The C56R mutation associated with factor XI deficiency has been first evidenced in individuals from the French Basque Country. Genetic investigations revealed that this mutation occurred about 5400 years ago as a founder effect in this zone. Other cases were subsequently described in Southwestern Europe.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) refers to a heterogeneous group of complex neurodevelopmental disorders characterized by social skill and communication deficits, along with stereotyped repetitive behavior. miRNAs, small non-coding RNAs that have been recognized as critical regulators of gene expression, play a key role in the neurodevelopmental transcriptional networks of the human brain. Previous investigations have proven that circulating miRNAs open up new possibilities for the emerging roles of diagnostic and prognostic biomarkers in human disorders and diseases.

View Article and Find Full Text PDF

Introduction: Factor XI (FXI) deficiency is a mild bleeding disorder, common among Ashkenazis, that may be underestimated in Caucasians. Management of FXI deficiency in women is a challenge, due to its unpredictable bleeding tendency and the little evidence available on this issue.

Objective: To describe gynaecological/obstetrical bleeding complications and to analyze the effectiveness and safety of the antihaemorrhagic treatment among women with FXI deficiency.

View Article and Find Full Text PDF

Tissue factor, coagulation factor XII, platelets, and neutrophils are implicated as important players in the pathophysiology of (experimental) venous thrombosis (VT). Their role became evident in mouse models in which surgical handlings were required to provoke VT. Combined inhibition of the natural anticoagulants antithrombin () and protein C () using small interfering RNA without additional triggers also results in a venous thrombotic phenotype in mice, most notably with vessel occlusion in large veins of the head.

View Article and Find Full Text PDF

Introduction: Congenital FXI deficiency, a coagulopathy associated with low bleeding risk but thrombotic protection, is usually diagnosed by prolonged APTT and confirmed by coagulation assays. Recent evidences suggest that FXI deficiency might be underestimated. Sensitive and reliable methods to detect FXI deficiency are required.

View Article and Find Full Text PDF

Introduction: Factor XI (FXI) deficiency is a rare disorder with molecular heterogeneity in Caucasians but relatively frequent and molecularly homogeneous in certain populations.

Aim: To characterize FXI deficiency in a Spanish town of 60 000 inhabitants.

Methods: A total of 324 764 APTT tests were screened during 20 years.

View Article and Find Full Text PDF

MicroRNAs have been recognized as critical regulators of gene expression and might affect the risk of venous thrombosis. We aimed to identify 3' untranslated region (UTR) variants in coagulation genes that influence coagulation factor levels and venous thrombosis risk. The 3'UTR of coagulation genes were sequenced in subjects with extremely high or low plasma levels of these factors in two case-control studies.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers identified miRNAs, particularly miR-27a/b-3p, that regulate TFPIα expression and found that increasing miR-27a/b-3p decreases TFPIα levels and its anticoagulant activity.
  • * Treatment with dihydrotestosterone elevated TFPIα levels while reducing miR-27a/b-3p levels, suggesting that testosterone plays a crucial role in balancing these factors, which may affect cardiovascular risk.
View Article and Find Full Text PDF

MiRNAs have been reported as CIS-acting elements of several hemostatic factors, however, their mechanism as TRANS-acting elements mediated by a transcription factor is little known and could have important effects. HNF4α has a direct and important role in the regulation of multiple hepatic coagulation genes. Previous in vitro studies have demonstrated that miR-24-3p and miR-34a-5p regulate HNF4A expression.

View Article and Find Full Text PDF

Recently, platelets, neutrophils, and factor XII (FXII) have been implicated as important players in the pathophysiology of venous thrombosis. Their role became evident in mouse models in which surgical handling was used to provoke thrombosis. Inhibiting anticoagulation in mice by using small interfering RNA (siRNA) targeting Serpinc1 and Proc also results in a thrombotic phenotype, which is spontaneous (no additional triggers) and reproducibly results in clots in the large veins of the head and fibrin deposition in the liver.

View Article and Find Full Text PDF