Purpose: TGF-β plays a dual role in breast carcinogenesis, acting at early stages as tumor-suppressors and later as tumor-promoters. TGF-β isoforms are expressed in breast tissues and secreted in milk, suggesting that analysis of levels in milk might be informative for breast cancer risk. Accordingly, we assessed TGF-β2 levels in milk from women who had undergone a breast biopsy and related the concentrations to diagnosis.
View Article and Find Full Text PDFIntroduction: Relationships of parity with breast cancer risk are complex. Parity is associated with decreased risk of postmenopausal hormone receptor-positive breast tumors, but may increase risk for basal-like breast cancers and early-onset tumors. Characterizing parity-related gene expression patterns in normal breast and breast tumor tissues may improve understanding of the biological mechanisms underlying this complex pattern of risk.
View Article and Find Full Text PDFBackground: The extent to which white blood cell (WBC) DNA methylation provides information on the status of breast epithelial cell DNA is unknown.
Patients And Methods: We examined the correlation between methylation in Ras-association domain family-1 gene (RASSF1), a tumor-suppressor gene, and methylation in repetitive elements in paired sets of DNA from WBC and breast epithelial cells collected from 32 women undergoing reduction mammoplasty.
Results: We observed no evidence of correlation in methylation levels for ALU, long interspersed nuclear element-1 (LINE1) or juxtacentromeric satellite-2 (SAT2) (r=0.
S-phase kinase-associated protein 2 (SKP2) is an important cell cycle regulator, targeting the cyclin-dependent kinase (CDK) inhibitor p27 for degradation, and is frequently overexpressed in breast cancer. p27 regulates G1 /S transition by abrogating the activity of cyclin/CDK complexes. p27 can undergo phosphorylation at serine 10 (pSer10p27).
View Article and Find Full Text PDFBackground: Transforming growth factor beta (TGFβ) is transiently increased in the mammary gland during involution and by radiation. While TGFβ normally has a tumour suppressor role, prolonged exposure to TGFβ can induce an oncogenic epithelial to mesenchymal transition (EMT) program in permissive cells and initiate the generation of cancer stem cells. Our objective is to mimic the transient exposure to TGFβ during involution to determine the persistent effects on premalignant mammary epithelium.
View Article and Find Full Text PDFBreast cancer is a heterogeneous disease that varies in its biology and response to therapy. A foremost threat to patients is tumor invasion and metastasis, with the greatest risk among patients diagnosed with triple-negative and/or basal-like breast cancers. A greater understanding of the molecular mechanisms underlying cancer cell spreading is needed as 90% of cancer-associated deaths result from metastasis.
View Article and Find Full Text PDFBackground: Secreted frizzled-related proteins (SFRPs) are a family of proteins that block the Wnt signaling pathway and loss of SFRP1 expression is found in breast cancer along with a multitude of other human cancers. Activated Wnt signaling leads to inappropriate mammary gland development and mammary tumorigenesis in mice. When SFRP1 is knocked down in immortalized non-malignant mammary epithelial cells, the cells exhibit a malignant phenotype which resembles the characteristics observed in metastatic breast cancer stem-like cells.
View Article and Find Full Text PDFBackground: Age is the strongest breast cancer risk factor, with overall breast cancer risk increasing steadily beginning at approximately 30 years of age. However, while breast cancer risk is lower among younger women, young women's breast cancer may be more aggressive. Although, several genomic and epidemiologic studies have shown higher prevalence of aggressive, estrogen-receptor negative breast cancer in younger women, the age-related gene expression that predisposes to these tumors is poorly understood.
View Article and Find Full Text PDFBackground: Paralemmin-1 is a phosphoprotein lipid-anchored to the cytoplasmic face of membranes where it functions in membrane dynamics, maintenance of cell shape, and process formation. Expression of paralemmin-1 and its major splice variant (Δ exon 8) as well as the extent of posttranslational modifications are tissue- and development-specific. Paralemmin-1 expression in normal breast and breast cancer tissue has not been described previously.
View Article and Find Full Text PDFActivation of inflammatory pathways is one plausible mechanism underlying the association between obesity and increased breast cancer risk. However, macrophage infiltration and local biomarkers of inflammation in breast adipose tissue have seldom been studied in association with obesity. Gene expression profiles of normal breast tissue from reduction mammoplasty patients were evaluated by whole genome microarrays to identify patterns associated with obesity status (normal-weight, body mass index (BMI) <25; overweight, BMI 25-29.
View Article and Find Full Text PDFPromoter methylation analysis of genes frequently silenced in breast cancer is a promising indicator of breast cancer risk, as these methylation events are thought to occur long before presentation of disease. The numerous exfoliated epithelial cells present in breast milk may provide the breast epithelial DNA needed for detailed methylation analysis and assessment of breast cancer risk. Fresh breast milk samples and health, lifestyle, and reproductive history questionnaires were collected from 111 women.
View Article and Find Full Text PDFPurpose: Cancer progression is mediated by processes that are also important in wound repair. As a result, cancers have been conceptualized as overhealing wounds or "wounds that do not heal," and gene expression signatures reflective of wound repair have shown value as predictors of breast cancer survival. Despite the widespread acknowledgment of commonalities between host responses to wounds and host responses to cancer, the gene expression responses of normal tissue adjacent to cancers have not been well characterized.
View Article and Find Full Text PDFBackground: The Wnt family of secreted proteins is implicated in the regulation of cell fate during development, as well as in cell proliferation, morphology, and migration. Aberrant activation of the Wnt/beta-catenin signaling pathway leads to the development of several human cancers, including breast cancer. Secreted frizzled-related protein 1 (SFRP1) antagonizes this pathway by competing with the Frizzled receptor for Wnt ligands resulting in an attenuation of the signal transduction cascade.
View Article and Find Full Text PDFDiverse compounds from many different chemical classes are currently targeted in preclinical analyses for their ability to act as both chemopreventive and chemotherapeutic agents. Phenolic phytochemicals from Rhodiola crenulata has such potential. This Rhodiola species is a perennial plant that grows in the Tundra, Siberia, and high-elevation regions of Tibet.
View Article and Find Full Text PDFThe pathways and key players that regulate parity-induced protection against breast cancer, conferred by estrogen (E) and progesterone (P), have not fully been explained. Interestingly, in rodents, high levels of circulating insulin-like growth factor-I (IGF-I) appear to block this parity-induced protection. Using an in-vitro mouse mammary gland whole organ culture system, we investigated the mechanisms by which IGF-I affects the protective effects of E+P.
View Article and Find Full Text PDFAn early full-term pregnancy significantly reduces the risk of getting breast cancer in women. In animals, this protection can be mimicked by a short-term exposure to physiologic doses of estrogen plus progesterone. Sensitization of p53 and up-regulation of transforming growth factor beta are believed to be important aspects of the mechanism by which protection is imparted.
View Article and Find Full Text PDFDNA damage normally induces p53 activity, but responses to ionizing radiation in the mammary epithelium vary among developmental stages. The following studies examined the hormones and growth factors that regulate radiation-responsiveness of p53 in mouse mammary epithelium. Immunoreactive p21/WAF1 and TUNEL staining were used as indicators of p53 activity following exposure to ionizing radiation.
View Article and Find Full Text PDFBACKGROUND: A full-term pregnancy has been associated with reduced risk for developing breast cancer. In rodent models, the protective effect of pregnancy can be mimicked with a defined regimen of estrogen and progesterone combination (E/P). However, the effects of pregnancy levels of E/P in humans and their underlying mechanisms are not fully understood.
View Article and Find Full Text PDF