Organic semiconducting polymers play a pivotal role in the development of field-effect transistors (OFETs) and organic light-emitting diodes (OLEDs), owing to their cost-effectiveness, structural versatility, and solution processability. However, achieving polymers with both high charge carrier mobility (μ) and photoluminescence (PL) quantum yield (Φ) remains a challenge. In this work, we present the design and synthesis of a novel donor-acceptor π-conjugated polymer, TTIF-BT, featuring a di-Thioeno[3,2-b] ThioenoIndeno[1,2-b] Fluorene (TTIF) backbone as the donor component.
View Article and Find Full Text PDFConjugated polymers (CPs) with polar side chains can conduct electronic and ionic charges simultaneously, making them promising for bioelectronics, electrocatalysis and energy storage. Recent work showed that adding alkyl spacers between CP backbones and polar side chains improved electronic charge carrier mobility, reduced swelling and enhanced stability, without compromising ion transport. However, how alkyl spacers impact polymer backbone conformation and, subsequently, electronic properties remain unclear.
View Article and Find Full Text PDFThe integration of organic electronic materials with biological systems to monitor, interface with, and regulate physiological processes is a key area in the field of bioelectronics. Central to this advancement is the development of cell-chip coupling, where materials engineering plays a critical role in enhancing biointerfacing capabilities. Conductive polymers have proven particularly useful in cell interfacing applications due to their favorable biophysical and chemical properties.
View Article and Find Full Text PDFGastrointestinal (GI) mucus is a biologically complex hydrogel that acts as a partially permeable barrier between the contents of the GI tract and the mucosal epithelial lining. Its structural integrity is essential for the lubrication of the tract thereby aiding smooth transit of contents, and the protection of the epithelium from pathogens that seek to colonise and invade. Understanding its physical response to drugs and the microbiome is essential for treating many gastrointestinal infectious diseases.
View Article and Find Full Text PDFThe performance of all-polymer solar cells is often enhanced by incorporating solvent additives during solution processing. In particular, blends based on the model all-polymer system PBDBT:N2200 have been shown to have increased short-circuit current and fill factor when processed with dilute diiodooctane (DIO). However, the morphological mechanism that drives the increase in performance is often not well understood due to limitations in common characterization techniques.
View Article and Find Full Text PDFPolymeric organic mixed ionic-electronic conductors underpin several technologies in which their electrochemical properties are desirable. These properties, however, depend on the microstructure that develops in their aqueous operational environment. We investigated the structure of a model organic mixed ionic-electronic conductor across multiple length scales using cryogenic four-dimensional scanning transmission electron microscopy in both its dry and hydrated states.
View Article and Find Full Text PDFIn this work, we compare two structurally near-amorphous rigid-rod polymers─poly(indacenodithiophene--benzothiadiazole), p(IDT-BT), and poly(indacenodithiophene--benzopyrollodione), p(IDT-BPD)─with orders of magnitude different mobilities to understand the effect charge carrier intrachain delocalization has on electronic transport. Quantum chemical calculations show that p(IDT-BPD) has a barrier to torsion that is significantly lower than that of p(IDT-BT) and is thus more likely to have reduced conjugation lengths. We utilize absorption and photoluminescence spectroscopy to characterize energetic disorder and show that p(IDT-BPD) has higher energetic disorder.
View Article and Find Full Text PDFAll-polymer solar cells (all-PSCs) offer improved morphological and mechanical stability compared with those containing small-molecule-acceptors (SMAs). They can be processed with a broader range of conditions, making them desirable for printing techniques. In this study, we report a high-performance polymer acceptor design based on bithiazole linker (PY-BTz) that are on par with SMAs.
View Article and Find Full Text PDFOperational stability underpins the successful application of organic mixed ionic-electronic conductors (OMIECs) in a wide range of fields, including biosensing, neuromorphic computing, and wearable electronics. In this work, both the operation and stability of a p-type OMIEC material of various molecular weights are investigated. Electrochemical transistor measurements reveal that device operation is very stable for at least 300 charging/discharging cycles independent of molecular weight, provided the charge density is kept below the threshold where strong charge-charge interactions become likely.
View Article and Find Full Text PDFThis study provides the first experimental polarized intermolecular and intramolecular optical absorption components of field-induced polarons in regioregular poly(3-hexylthiophene-2,5-diyl), rr-P3HT, a polymer semiconductor. Highly aligned rr-P3HT thin films were prepared by a high temperature shear-alignment process that orients polymer backbones along the shearing direction. rr-P3HT in-plane molecular orientation was measured by electron diffraction, and out-of-plane orientation was measured through series of synchrotron X-ray scattering techniques.
View Article and Find Full Text PDFSemiconducting conjugated polymers bearing glycol side chains can simultaneously transport both electronic and ionic charges with high charge mobilities, making them ideal electrode materials for a range of bioelectronic devices. However, heavily glycolated conjugated polymer films have been observed to swell irreversibly when subjected to an electrochemical bias in an aqueous electrolyte. The excessive swelling can lead to the degradation of their microstructure, and subsequently reduced device performance.
View Article and Find Full Text PDFThe use of bacteriophages, viruses that specifically infect bacteria, as antibiotics has become an area of great interest in recent years as the effectiveness of conventional antibiotics recedes. The detection of phage interactions with specific bacteria in a rapid and quantitative way is key for identifying phages of interest for novel antimicrobials. Outer membrane vesicles (OMVs) derived from Gram-negative bacteria can be used to make supported lipid bilayers (SLBs) and therefore membrane models that contain naturally occurring components of the bacterial outer membrane.
View Article and Find Full Text PDFSynthetic efforts have delivered a library of organic mixed ionic-electronic conductors (OMIECs) with high performance in electrochemical transistors. The most promising materials are redox-active conjugated polymers with hydrophilic side chains that reach high transconductances in aqueous electrolytes due to volumetric electrochemical charging. Current approaches to improve transconductance and device stability focus mostly on materials chemistry including backbone and side chain design.
View Article and Find Full Text PDFMixed conductors-materials that can efficiently conduct both ionic and electronic species-are an important class of functional solids. Here we demonstrate an organic nanocomposite that spontaneously forms when mixing an organic semiconductor with an ionic liquid and exhibits efficient room-temperature mixed conduction. We use a polymer known to form a semicrystalline microstructure to template ion intercalation into the side-chain domains of the crystallites, which leaves electronic transport pathways intact.
View Article and Find Full Text PDFIndacenodithiophene (IDT) copolymers are a class of conjugated polymers that have limited long-range order and high hole mobilities, which makes them promising candidates for use in deformable electronic devices. Key to their high hole mobilities is the coplanar monomer repeat units within the backbone. Poly(indacenodithiophene-benzothiadiazole) (PIDT-BT) and poly(indacenodithiophene-thiapyrollodione) (PIDT-TPD) are two IDT copolymers with planar backbones, but they are brittle at low molecular weight and have unsuitably high elastic moduli.
View Article and Find Full Text PDFExchanging hydrophobic alkyl-based side chains to hydrophilic glycol-based side chains is a widely adopted method for improving mixed-transport device performance, despite the impact on solid-state packing and polymer-electrolyte interactions being poorly understood. Presented here is a molecular dynamics (MD) force field for modeling alkoxylated and glycolated polythiophenes. The force field is validated against known packing motifs for their monomer crystals.
View Article and Find Full Text PDFIn the past two decades, organic electronic materials have enabled and accelerated a large and diverse set of technologies, from energy-harvesting devices and electromechanical actuators, to flexible and printed (opto)electronic circuitry. Among organic (semi)conductors, organic mixed ion-electronic conductors (OMIECs) are now at the center of renewed interest in organic electronics, as they are key drivers of recent developments in the fields of bioelectronics, energy storage, and neuromorphic computing. However, due to the relatively slow switching dynamics of organic electronics, their application in microwave technology, until recently, has been overlooked.
View Article and Find Full Text PDFOrganic electrochemical transistors (OECTs) have shown promise as transducers and amplifiers of minute electronic potentials due to their large transconductances. Tuning the OECT threshold voltage is important to achieve low-powered devices with amplification properties within the desired operational voltage range. However, traditional design approaches have struggled to decouple channel and materials properties from threshold voltage, thereby compromising on several other OECT performance metrics, such as electrochemical stability, transconductance, and dynamic range.
View Article and Find Full Text PDFElectronic transport models for conducting polymers (CPs) and blends focus on the arrangement of conjugated chains, while the contributions of the nominally insulating components to transport are largely ignored. In this work, an archetypal CP blend is used to demonstrate that the chemical structure of the non-conductive component has a substantial effect on charge carrier mobility. Upon diluting a CP with excess insulator, blends with as high as 97.
View Article and Find Full Text PDFA new class of donor-acceptor (D-A) copolymers found to produce high charge carrier mobilities competitive with amorphous silicon (>1 cm V s) exhibit the puzzling microstructure of substantial local order, however lacking long-range order and crystallinity previously deemed necessary for achieving high mobility. Here, we demonstrate the application of low-dose transmission electron microscopy to image and quantify the nanoscale and mesoscale organization of an archetypal D-A copolymer across areas comparable to electronic devices (≈9 μm). The local structure is spatially resolved by mapping the backbone (001) spacing reflection, revealing nanocrystallites of aligned polymer chains throughout nearly the entire film.
View Article and Find Full Text PDFOrganic mixed ionic-electronic conductors (OMIECs) have gained recent interest and rapid development due to their versatility in diverse applications ranging from sensing, actuation and computation to energy harvesting/storage, and information transfer. Their multifunctional properties arise from their ability to simultaneously participate in redox reactions as well as modulation of ionic and electronic charge density throughout the bulk of the material. Most importantly, the ability to access charge states with deep modulation through a large extent of its density of states and physical volume of the material enables OMIEC-based devices to display exciting new characteristics and opens up new degrees of freedom in device design.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2022
In this study, optical multispectral sensors based on perovskite semiconductors have been proposed, simulated, and characterized. The perovskite material system combined with the 3D vertical integration of the sensor channels allow for realizing sensors with high sensitivities and a high spectral resolution. The sensors can be applied in several emerging areas, including biomedical imaging, surveillance, complex motion planning of autonomous robots or vehicles, artificial intelligence, and agricultural applications.
View Article and Find Full Text PDFAntibiotic resistance is a growing global health concern due to the decreasing number of antibiotics available for therapeutic use as more drug-resistant bacteria develop. Changes in the membrane properties of Gram-negative bacteria can influence their response to antibiotics and give rise to resistance. Thus, understanding the interactions between the bacterial membrane and antibiotics is important for elucidating microbial membrane properties to use for designing novel antimicrobial drugs.
View Article and Find Full Text PDFThe development of systems capable of responding to environmental changes, such as humidity, requires the design and assembly of highly sensitive and efficiently transducing elements. Such a challenge can be mastered only by disentangling the role played by each component of the responsive system, thus ultimately achieving high performance by optimizing the synergistic contribution of all functional elements. Here, we designed and synthesized a novel [1]benzothieno[3,2-][1]benzothiophene derivative equipped with hydrophilic oligoethylene glycol lateral chains (OEG-BTBT) that can electrically transduce subtle changes in ambient humidity with high current ratios (>10) at low voltages (2 V), reaching state-of-the-art performance.
View Article and Find Full Text PDF