Publications by authors named "Salle M"

Helical foldamers constitute particularly relevant targets in the field of host-guest chemistry, be that as hosts or substrates. In this context, the strategies reported so far to control the dimensions and shape of foldamers mainly involve modifications of the skeleton through covalent synthesis. Herein, we prepared an oligopyridine dicarboxamide foldamer substituted by photo-active tetraphenylethylenes (TPE).

View Article and Find Full Text PDF

Helical foldamers have attracted much attention over the last decades given their resemblance to certain biomacromolecules and their potential in domains as different as pharmaceutics, catalysis and photonics. Various research groups have successfully controlled the right- or left- handedness of these oligomers by introducing stereogenic centers through covalent or non-covalent chemistry. However, developing helical structures whose handedness can be reversibly switched remains a major challenge for chemists.

View Article and Find Full Text PDF

Incorporating chiral elements in host-guest systems currently attracts much attention because of the major impact such structures may have in a wide range of applications, from pharmaceuticals to materials science and beyond. Moreover, the development of multi-responsive and -functional systems is highly desirable since they offer numerous benefits. In this context, we describe herein the construction of a metal-driven self-assembled cage that associates a chiral truxene-based ligand and a bis-ruthenium complex.

View Article and Find Full Text PDF

This study assessed the effectiveness and predictability of a readily available protocol to treat peri-implantitis utilizing mechanical debridement, chemical antiseptic surface detoxification, and osseous grafting. Nine patients (7 women, 2 men; mean age: 56.5 years) with 15 implants with peri-implantitis were included.

View Article and Find Full Text PDF

In this Letter, we present the design and performance of the frequency-dependent squeezed vacuum source that will be used for the broadband quantum noise reduction of the Advanced Virgo Plus gravitational-wave detector in the upcoming observation run. The frequency-dependent squeezed field is generated by a phase rotation of a frequency-independent squeezed state through a 285 m long, high-finesse, near-detuned optical resonator. With about 8.

View Article and Find Full Text PDF

Indications Corridor And Limits Of Exposure: This approach is intended for tumors centered in the jugular foramen with extensions between intracranial and extracranial spaces, possible spread to the middle ear, and variable bony destruction. 1,2.

Anatomic Essentials Need For Preoperative Planning And Assessment: Jugular foramen paragangliomas are complex lesions that usually invade and fill related venous structures.

View Article and Find Full Text PDF

Peri-thiaxanthenothiaxanthene, an S-doped analog of peri-xanthenoxanthene, is used as a polycyclic aromatic hydrocarbon (PAH) scaffold to tune the molecular semiconductor properties by editing the oxidation state of the S-atoms. Chemical oxidation of peri-thiaxanthenothiaxanthene with H O led to the relevant sulfoxide and sulfone congeners, whereas electrooxidation gave access to sulfonium-type derivatives forming crystalline mixed valence (MV) complexes. These complexes depicted peculiar molecular and solid-state arrangements with face-to-face π-π stacking organization.

View Article and Find Full Text PDF

Intermittent hypoxia (IH), the major feature of obstructive sleep apnea syndrome (OSAS), induces atherosclerosis and elastic fiber alterations. VE-cadherin cleavage is increased in OSAS patients and in an IH-cellular model. It is mediated by HIF-1 and Src-tyr-kinases pathways and results in endothelial hyperpermeability.

View Article and Find Full Text PDF

The incorporation of a redox-active nickel salen complex into supramolecular structures was explored via coordination-driven self-assembly with homobimetallic ruthenium complexes (bridged by oxalato or 5,8-dihydroxy-1,4-naphthoquinato ligands). The self-assembly resulted in the formation of a discrete rectangle using the oxalato complex and either a rectangle or a catenane employing the larger naphthoquinonato complex. The formation of the interlocked self-assembly was determined to be solvent and concentration dependent.

View Article and Find Full Text PDF

The development of methodologies to control on demand and reversibly supramolecular transformations from self-assembled metalla-structures requires the rational design of architectures able to answer to an applied stimulus. While solvent or concentration changes, light exposure or addition of a chemical have been largely explored to provide these transformations, the case of pH sensitive materials is less described. Herein, we report the first example of a pH-triggered dissociation of a coordination-driven self-assembled interlocked molecular link.

View Article and Find Full Text PDF

The coordination-driven self-assembly methodology has emerged over the last few decades as an extraordinarily versatile synthetic tool for obtaining discrete macrocyclic or cage structures. Rational approaches using large libraries of ligands and metal complexes have allowed researchers to reach more and more sophisticated discrete structures such as interlocked, chiral, or heteroleptic cages, and some of them are designed for guest binding applications. Efforts have been notably produced in controlling host-guest affinity with, in particular, an evident interest in targeting substrate transportation and subsequent delivering.

View Article and Find Full Text PDF

Janus nanocylinders exhibit nanometric dimensions, a high aspect ratio, and two faces with different chemistries (Janus character), making them potentially relevant for applications in optics, magnetism, catalysis, surface nanopatterning, or interface stabilization, but they are also very difficult to prepare by conventional strategies. In the present work, Janus nanocylinders were prepared by supramolecular coassembly in water of two different polymers functionalized with complementary assembling units. The originality of our approach consists in combining charge transfer complexation between electron-rich and electron-poor units with hydrogen bonding to (1) drive the supramolecular formation of one-dimensional structures (cylinders), (2) force the two polymer arms on opposite sides of the cylinders independently of their compatibility, resulting in Janus nanoparticles, and (3) detect coassembly through a color change of the solution upon mixing of the functional polymers.

View Article and Find Full Text PDF

Two-component organogels and xerogels based on a C -symmetric pyrene-containing gelator have been deeply characterized through a wide range of techniques. Based on the formation of charge transfer complexes, the gelation phenomenon proved to be highly dependent on the nature of the electron poor dopant. This parameter significantly influenced the corresponding gelation domains, the critical gelation concentrations of acceptor dopants, the gel-to-sol transition temperatures, the microstructures formed in the xerogel state and their spectroscopic properties.

View Article and Find Full Text PDF

Herein we report an efficient synthesis to prepare O-doped nanographenes derived from the π-extension of pyrene. The derivatives are highly fluorescent and feature low oxidation potentials. Using electrooxidation, crystals of cationic mixed-valence (MV) complexes were grown in which the organic salts organize into face-to-face π-stacks, a favorable solid-state arrangement for organic electronics.

View Article and Find Full Text PDF

Developing methodologies for on-demand control of the release of a molecular guest requires the rational design of stimuli-responsive hosts with functional cavities. While a substantial number of responsive metallacages have already been described, the case of coordination-tweezers has been less explored. Herein, we report the first example of a redox-triggered guest release from a metalla-assembled tweezer.

View Article and Find Full Text PDF

Naphthalene-diimide (NDI)-containing nanocylinders were formed by supramolecular self-assembly in water through cooperative hydrogen bonds between bis(urea) units, reinforced by hydrophobic and aromatic-stacking interactions. The nanocylinders, decorated with poly(ethylene oxide) arms ensuring their solubility in water, exhibit a huge aspect ratio (diameter 13 nm, length 300 nm) and are extremely stable.

View Article and Find Full Text PDF

The synthesis of a redox-active helical foldamer and its immobilization onto a gold electrode are described. These large molecular architectures are grafted in a reproducible manner and provide foldamer-based self-assembled monolayers displaying recognition properties.

View Article and Find Full Text PDF

The design and synthesis of a supramolecular square was achieved by coordination-driven assembly of redox-active nickel(ii) salen linkers and (ethylenediamine)palladium(ii) nodes. The tetrameric geometry of the supramolecular structure was confirmed via MS, NMR, and electrochemical experiments. While oxidation of the monomeric metalloligand Schiff-base affords a Ni(iii) species, oxidation of the coordination-driven assembly results in ligand radical formation.

View Article and Find Full Text PDF

Tetrathiafulvalene redox units were grafted at both extremities of an oligopyridine-dicarboxamide foldamer through a straightforward copper-catalyzed azide-alkyne cycloaddition. The present work demonstrates that the hybridization equilibrium of foldamers can be tuned through redox stimulations.

View Article and Find Full Text PDF

Tetrathiafulvalene (TTF) has been extensively explored as a π-electron donor in supramolecular systems. Over the last two decades substantial advances have been made in terms of constructing elaborate architectures based on TTF and in exploiting the resulting systems in the context of supramolecular host-guest recognition. The inherent electron-donating character of TTF derivatives has led to their use in the construction of highly efficient optoelectronic materials, optical sensors, and electron-transfer ensembles.

View Article and Find Full Text PDF

Two M L redox-active self-assembled cages constructed from an electron-rich ligand based on the extended tetrathiafulvalene framework (exTTF) and metal complexes with a linear geometry (Pd and Ag ) are depicted. Remarkably, based on a combination of specific structural and electronic features, the polycationic self-assembled Ag coordination cage undergoes a supramolecular transformation upon oxidation into a three-dimensional coordination polymer, that is characterized by X-ray crystallography. This redox-controlled change of the molecular organization results from the drastic conformational modifications accompanying oxidation of the exTTF moiety.

View Article and Find Full Text PDF

The present work takes advantage of the self-assembly process occurring along organogelation, to organize Second Harmonic Generation (SHG) active chromophores. To do so, three push-pull chromophores endowed with a dodecyl urea chain were synthesized and characterized. Their organogelating properties were studied in a wide range of solvents.

View Article and Find Full Text PDF

We demonstrate the benefits of using cofacial Zn-porphyrins as structural synthons in coordination-driven self-assembled prisms to produce cage-like singlet oxygen ( O ) photosensitizers with tunable properties. In particular, we describe the photosensitizing and emission properties of palladium- and copper-based supramolecular capsules, and demonstrate that the nature of the bridging metal nodes in these discrete self-assembled prisms strongly influences O generation at the Zn-porphyrin centers. The Pd -based prism is a particularly robust photosensitizer, whereas the Cu self-assembled prism is a dormant photosensitizer that could be switched to a ON state upon disassembly of the suprastructure.

View Article and Find Full Text PDF

A proof-of-concept related to the redox-control of the binding/releasing process in a host-guest system is achieved by designing a neutral and robust Pt-based redox-active metallacage involving two extended-tetrathiafulvalene (exTTF) ligands. When neutral, the cage is able to bind a planar polyaromatic guest (coronene). Remarkably, the chemical or electrochemical oxidation of the host-guest complex leads to the reversible expulsion of the guest outside the cavity, which is assigned to a drastic change of the host-guest interaction mode, illustrating the key role of counteranions along the exchange process.

View Article and Find Full Text PDF

An electroactive and luminescent foldamer based on an oligopyridine biscarboxamide skeleton was synthesized and characterised. Its conformation in the solid state proved to be strongly affected by the peripheral pyrene units. The latter also endow the target derivative with recognition abilities toward electron-withdrawing molecules, which allow tuning of the spectroscopic properties of the foldamer.

View Article and Find Full Text PDF