Publications by authors named "Saliya Ekanayake"

There is large interest in networked social science experiments for understanding human behavior at-scale. Significant effort is required to perform data analytics on experimental outputs and for computational modeling of custom experiments. Moreover, experiments and modeling are often performed in a cycle, enabling iterative experimental refinement and data modeling to uncover interesting insights and to generate/refute hypotheses about social behaviors.

View Article and Find Full Text PDF

Genomic datasets are growing dramatically as the cost of sequencing continues to decline and small sequencing devices become available. Enormous community databases store and share these data with the research community, but some of these genomic data analysis problems require large-scale computational platforms to meet both the memory and computational requirements. These applications differ from scientific simulations that dominate the workload on high-end parallel systems today and place different requirements on programming support, software libraries and parallel architectural design.

View Article and Find Full Text PDF

Unlabelled: Arbuscular mycorrhizal (AM) fungi form mutualisms with plant roots that increase plant growth and shape plant communities. Each AM fungal cell contains a large amount of genetic diversity, but it is unclear if this diversity varies across evolutionary lineages. We found that sequence variation in the nuclear large-subunit (LSU) rRNA gene from 29 isolates representing 21 AM fungal species generally assorted into genus- and species-level clades, with the exception of species of the genera Claroideoglomus and Entrophospora However, there were significant differences in the levels of sequence variation across the phylogeny and between genera, indicating that it is an evolutionarily constrained trait in AM fungi.

View Article and Find Full Text PDF

Background: Modern pyrosequencing techniques make it possible to study complex bacterial populations, such as 16S rRNA, directly from environmental or clinical samples without the need for laboratory purification. Alignment of sequences across the resultant large data sets (100,000+ sequences) is of particular interest for the purpose of identifying potential gene clusters and families, but such analysis represents a daunting computational task. The aim of this work is the development of an efficient pipeline for the clustering of large sequence read sets.

View Article and Find Full Text PDF

Background: Clouds and MapReduce have shown themselves to be a broadly useful approach to scientific computing especially for parallel data intensive applications. However they have limited applicability to some areas such as data mining because MapReduce has poor performance on problems with an iterative structure present in the linear algebra that underlies much data analysis. Such problems can be run efficiently on clusters using MPI leading to a hybrid cloud and cluster environment.

View Article and Find Full Text PDF