This article details the mathematical model of a microfluidic device aimed at separating any binary heterogeneous sample of microparticles into two homogeneous samples based on size with sub-micron resolution. The device consists of two sections, where the upstream section is dedicated to focusing of microparticles, while the downstream section is dedicated to separation of the focused stream of microparticles into two samples based on size. Each section has multiple planar electrodes of finite size protruding into the microchannel from the top and bottom of each sidewall; each top electrode aligns with a bottom electrode and they form a pair leading to multiple pairs of electrodes on each side.
View Article and Find Full Text PDFMicromachines (Basel)
August 2019
An experimentally validated mathematical model of a microfluidic device with nozzle-shaped electrode configuration for realizing dielectrophoresis based 3D-focusing is presented in the article. Two right-triangle shaped electrodes on the top and bottom surfaces make up the nozzle-shaped electrode configuration. The mathematical model consists of equations describing the motion of microparticles as well as profiles of electric potential, electric field, and fluid flow inside the microchannel.
View Article and Find Full Text PDF