Publications by authors named "Salinas-Castillo A"

In this work, we report on five novel coordination polymers (CPs) based on the linkage of the [Cd(6apic)] building block [where 6apic = 6-aminopicolinate] by different bipyridine-type organic spacers, forming different coordination compounds with the following formulae: [Cd(μ-6apic)] (1), {[Cd(6apic)(μ-bipy)]·HO} (2), {[Cd(6apic)(μ-bpe)]·2HO} (3), [Cd(6apic)(μ-6apic)(μ-bpa)] (4) and {[Cd(6apic)(μ-tmbp)]·7HO} (5) [where bipy = 4,4'-bipyridine, bpe = 1,2-di(4-pyridyl)ethylene, bpa = 1,2-di(4-pyridyl)ethane (bpa) and tmbp = 1,3-di(4-pyridyl)propane]. Most of the synthesized compounds form infinite metal-organic rods through the linkage of the building block by the bipyridine-type linker, except in the case of compound 4 whose assembly forms a densely packed 3D architecture. All compounds were fully characterized and their photoluminescence properties were studied experimentally and computationally through density functional theory (DFT) calculations.

View Article and Find Full Text PDF

Two novel Ce(III) metal organic frameworks (MOFs) with formulas [Ce(5Meip)(H-5Meip)]GR-MOF-17 and [CeCl(5Meip)(DMF)]GR-MOF-18 (5Meip = 5-methylisophthalate, DMF = ,-dimethylformamide) have been synthesized, forming 3-dimensional frameworks. Magnetic measurements show that both compounds present field-induced slow magnetic relaxation under a small applied dc field. For GR-MOF-17, the temperature dependence of relaxation times is best described by a Raman mechanism, whereas for GR-MOF-18, relaxation occurs through a combination of Raman and local-mode pathways.

View Article and Find Full Text PDF

Here, we propose a microfluidic paper-based analytical device (µPAD) implemented with a near-field communication (NFC) tag as a portable, simple and fast colorimetric method for glutathione (GSH) determination. The proposed method was based on the fact that Ag could oxidize 3,3',5,5'-tetramethylbenzidine (TMB) into oxidized blue TMB. Thus, the presence of GSH could cause the reduction of oxidized TMB, which resulted in a blue color fading.

View Article and Find Full Text PDF

The work presented herein reports on the synthesis, structural and physico-chemical characterization, luminescence properties and luminescent sensing activity of a family of isostructural coordination polymers (CPs) with the general formula [Ln(μ-5Meip)(DMF)] (where Ln(III) = Sm (), Eu (), Gd (), Tb () and Yb () and 5Meip = 5-methylisophthalate, DMF = N,N-dimethylmethanamide). Crystal structures consist of 3D frameworks tailored by the linkage between infinite lanthanide(III)-carboxylate rods by means of the tetradentate 5Meip ligands. Photoluminescence measurements in solid state at variable temperatures reveal the best-in-class properties based on the capacity of the 5Meip ligand to provide efficient energy transfers to the lanthanide(III) ions, which brings intense emissions in both the visible and near-infrared (NIR) regions.

View Article and Find Full Text PDF

Two novel metal-organic frameworks (MOFs), based on dysprosium as the metal and the 5-aminoisophthalic acid (5aip) ligand, have been solvothermally synthesized, with the aim of studying and modulating their luminescence properties according to the variation of solvent in the structure. These materials display intense photo-luminescence properties in the solid state at room temperature. Interestingly, one fascinating sensory capacity of compound regards obtaining a variation of the signal, depending on the solvent to which it is exposed.

View Article and Find Full Text PDF

Herein, we present the syntheses of a novel coordination polymer (CP) based on the perylene-3,4,9,10-tetracarboxylate (pery) linkers and sodium metal ions. We have chosen sodium metal center with the aim of surmising the effect that the modification of the metal ion may have on the relative humidity (RH) experimental measurements of the material. We confirm the role of the ions in the functionalization of the deposited layer by modifying their selectivity towards moisture content, paving the way to the generation of sensitive and selective chemical sensors.

View Article and Find Full Text PDF

Here we present a new approach for the development of fluoride chemosensors taking advantage of aggregation induced emission (AIE) properties. Although AIE-based chemosensors have been described, they rely primarily on the analyte causing aggregation and hence fluorescence. We propose a new concept in the use of AIE for the development of fluorescent sensors.

View Article and Find Full Text PDF

Tetracycline (TC) is a widely known antibiotic used worldwide to treat animals. Its residues in animal-origin foods cause adverse health effects to consumers. Low-cost and real-time measuring systems of TC in food samples are, therefore, extremely needed.

View Article and Find Full Text PDF

A new palladium coordination compound based on gliclazide with the chemical formula [Pd(glz)] (where glz = gliclazide) has been synthesized and characterised. The structural characterization reveals that this material consists of mononuclear units formed by a Pd ion coordinated to two molecules of the glz ligand, in which palladium ions exhibit a distorted plane-square coordination sphere. This novel material behaves like a good and selective inhibitor of butyrylcholinesterase, one of the most relevant therapeutic targets against Alzheimer's disease.

View Article and Find Full Text PDF

Encapsulation of magnetic nanoparticles (MNPs) of iron (II, III) oxide (FeO) with a thermopolymeric shell of a crosslinked poly(2-(2-methoxyethoxy)ethyl methacrylate) P(MEOMA) is successfully developed. Magnetic aggregates of large size, around 150-200 nm are obtained during the functionalization of the iron oxide NPs with vinyl groups by using 3-butenoic acid in the presence of a water soluble azo-initiator and a surfactant, at 70 °C. These polymerizable groups provide a covalent attachment of the P(MEOMA) shell on the surface of the MNPs while a crosslinked network is achieved by including tetraethylene glycol dimethacrylate in the precipitation polymerization synthesis.

View Article and Find Full Text PDF

This work presents an innovative application of carbon dots (Cdots) nanoparticles as sensing layer for relative humidity detection. The developed sensor is based on interdigitated capacitive electrodes screen printed on a flexible transparent polyethylene terephthalate (PET) film. Cdots are deposited on top of these electrodes.

View Article and Find Full Text PDF

In this letter, we present the extension of a previous work on a cost-effective method for fabricating highly sensitive humidity sensors on flexible substrates with a reversible response, allowing precise monitoring of the humidity threshold. In that work we demonstrated the use of three-dimensional metal-organic framework (MOF) film deposition based on the perylene-3,4,9,10-tetracarboxylate linker, potassium as metallic center and the interspacing of silver interdigitated electrodes (IDEs) as humidity sensors. In this work, we study one of the most important issues in efficient and reproducible mass production, which is to optimize the most important processes' parameters in their fabrication, such as controlling the thickness of the sensor's layers.

View Article and Find Full Text PDF

The determination of creatinine levels is essential for the detection of renal and muscular dysfunction. Luminescent nanoparticles are emerging as fast, cheap and highly selective sensors for the detection and quantification of creatinine. Nevertheless, current nanosensors only have a short shelf life due to their poor chemical and colloidal stability, which limits their clinical functionality.

View Article and Find Full Text PDF

A microfluidic paper-based analytical device integrating carbon dot (CDs) is fabricated and used for a fluorometric off-on assay of biothiols. Vinyl sulfone (VS) click immobilization of carbon dots (CDs) on paper was accomplished by a one-pot simplified protocol that uses divinyl sulfone (DVS) as a homobifunctional reagent. This reagent mediated both the click oxa-Michael addition to the hydroxyl groups of cellulose and ulterior covalent grafting of the resulting VS paper to NH-functionalized CDs by means of click aza-Michael addition.

View Article and Find Full Text PDF

In this paper, we present a comparative study of a cost-effective method for the mass fabrication of electrodes to be used in thin-film flexible supercapacitors. This technique is based on the laser-synthesis of graphene-based nanomaterials, specifically, laser-induced graphene and reduced graphene oxide. The synthesis of these materials was performed using two different lasers: a CO laser with an infrared wavelength of λ = 10.

View Article and Find Full Text PDF

A portable reconfigurable platform for hemoglobin determination based on inner filter quenching of room-temperature phosphorescent carbon dots (CDs) in the presence of HO is described. The electronic setup consists of a light-emitting diode (LED) as the carbon dot optical exciter and a photodiode as a light-to-current converter integrated in the same instrument. The reconfigurable feature provides adaptability to use the platform as an analytical probe for CDs coming from different batches with some variations in luminescence characteristics.

View Article and Find Full Text PDF

Chromophore-appended cyclodextrins combine the supramolecular loading capabilities of cyclodextrins (CDs) with the optical properties of the affixed chromophores. Among fluorescent materials, carbon dots (CNDs) are attractive and the feasibility of CND-appended CDs as sensors has been demonstrated by different authors. However, CNDs are intrinsically heterogeneous materials and their ulterior functionalization yields hybrid composites that are not well defined in terms of structure and composition.

View Article and Find Full Text PDF

Herein, the reproducibility and a double validation of on-body measurements provided by new wearable potentiometric ion sensors (WPISs) is presented. Sweat collected during sport practice was first analyzed using the developed device, the pH-meter, and ion chromatography (IC) prior to on-body measurements (off-site validation). Subsequently, the accuracy of on-body measurements accomplished by the WPISs was evaluated by comparison with pH-meter readings and IC after collecting sweat (every 10-12.

View Article and Find Full Text PDF

Activated carbon nanodots functionalized with acid anhydride groups (AA-CNDs) are prepared by one-pot water-free green thermolysis of citric acid. As a proof of concept of their capabilities as appealing and versatile platforms for accessing engineering nanoconstructs, the as-prepared AA-CNDs have been reacted to yield clickable CNDs. Their click bioconjugation with relevant recognizable complementary clickable sugars has led to multivalent CND-based glyconanoparticles that are non-toxic and biorecognizable.

View Article and Find Full Text PDF

Creatinine is a metabolite present in urine, and its concentration is used to diagnose and monitor kidney performance. For that reason, the development of new sensors to analyze this metabolite and obtain accurate results in a short period of time is necessary. An optical disposable sensor for monitoring creatinine levels in urine is described.

View Article and Find Full Text PDF

We have synthesized a novel three-dimensional metal-organic-framework (MOF) based on the perylene-3,4,9,10-tetracarboxylate linker and potassium as metallic centre. We report the formation of this K-based MOF using conventional routes with water as solvent. This material displays intense green photoluminescence at room temperature, and displays an aggregation dependent quenching.

View Article and Find Full Text PDF

This work presents a detailed study of the photothermal ablation of Kapton polyimide by a laser diode targeting its electrical conductivity enhancement. Laser-treated samples were structurally characterized using Scanning Electron Microscopy (SEM), Raman spectroscopy, X-ray Photoelectron Spectroscopy (XPS), as well as Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy. The results show that the laser-assisted ablation constitutes a simple one-step and environmental friendly method to induce graphene-derived structures on the surface of polyimide films.

View Article and Find Full Text PDF

This work presents a microfluidic paper-based analytical device (μPAD) for glucose determination using a supported metal-organic framework (MOF) acting as a peroxidase mimic. The catalytic action of glucose oxidase (GOx) on glucose causes the formation of HO, and the MOF causes the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by HO to form a blue-green product with an absorption peak at 650 nm in the detection zone. A digital camera and the iOS feature of a smartphone are used for the quantitation of glucose with the S coordinate of the HSV color space as the analytical parameter.

View Article and Find Full Text PDF

We present a new chemistry to determine nitrites implemented in a microfluidic paper-based analytical device (µPAD). The device is fabricated in cellulose paper with a sample reception area and three replicate detection areas with recognition chemistry immobilized by adsorption. The method involves the use of nitrite in an acid medium reaction to generate nitrous acid, which produces the oxidation of s-dihydrotetrazine: 1,2-dihydro-3,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)-1,2,4,5-tetrazine (DHBPTz), which change the detection zone from colorless to pink.

View Article and Find Full Text PDF