Objectives: To assess the image quality of ultra-high-resolution (UHR) virtual monoenergetic images (VMIs) at 40 keV compared to 70 keV, using spectral photon-counting CT (SPCCT) and dual-layer dual-energy CT (DECT) for coronary computed tomography angiography (CCTA).
Methods And Materials: In this prospective IRB-approved study, 26 high-risk patients were included. CCTA was performed both with an SPCCT in UHR mode and with one of two DECT scanners (iQOn or CT7500) within 3 days.
3D printed biomaterial implants are revolutionizing personalized medicine for tissue repair, especially in orthopedics. In this study, a radiopaque bismuth oxide (BiO) doped polycaprolactone (PCL) composite is developed and implemented to enable the use of diagnostic X-ray technologies, especially spectral photon counting X-ray computed tomography (SPCCT), for comprehensive tissue engineering scaffold (TES) monitoring. PCL filament with homogeneous BiO nanoparticle (NP) dispersion (0.
View Article and Find Full Text PDFPurpose: This study addresses the critical issue of evaluating the risk of rupture of unruptured intracranial aneurysms (UIAs) through the assessment of the mechanical properties of the aneurysm wall. To achieve this, an original approach based on the development of an in vivo deformation device prototype (DDP) of the vascular wall is proposed. The DDP operates by pulsing a physiological fluid onto the vascular wall and measuring the resulting deformation using spectral photon counting computed tomography (SPCCT) imaging.
View Article and Find Full Text PDFRadiology in France has made major advances in recent years through innovations in research and clinical practice. French institutions have developed innovative imaging techniques and artificial intelligence applications in the field of diagnostic imaging and interventional radiology. These include, but are not limited to, a more precise diagnosis of cancer and other diseases, research in dual-energy and photon-counting computed tomography, new applications of artificial intelligence, and advanced treatments in the field of interventional radiology.
View Article and Find Full Text PDFPurpose: The purpose of this study was to compare lung image quality obtained with ultra-high resolution (UHR) spectral photon-counting CT (SPCCT) with that of dual-layer CT (DLCT), at standard and low dose levels using an image quality phantom and an anthropomorphic lung phantom.
Methods: An image quality phantom was scanned using a clinical SPCCT prototype and an 8 cm collimation DLCT from the same manufacturer at 10 mGy. Additional acquisitions at 6 mGy were performed with SPCCT only.
Diagn Interv Imaging
September 2024
In recent years, computed tomography (CT) has undergone a number of developments to improve radiological care. The most recent major innovation has been the development of photon-counting detectors. By comparison with the energy-integrating detectors traditionally used in CT, these detectors offer better dose efficiency, eliminate electronic noise, improve spatial resolution and have intrinsic spectral sensitivity.
View Article and Find Full Text PDFBackground: Recent advancements in anomaly detection have paved the way for novel radiological reading assistance tools that support the identification of findings, aimed at saving time. The clinical adoption of such applications requires a low rate of false positives while maintaining high sensitivity.
Purpose: In light of recent interest and development in multi pathology identification, we present a novel method, based on a recent contrastive self-supervised approach, for multiple chest-related abnormality identification including low lung density area ("LLDA"), consolidation ("CONS"), nodules ("NOD") and interstitial pattern ("IP").
Background: 5D, free-running imaging resolves sets of 3D whole-heart images in both cardiac and respiratory dimensions. In an application such as coronary imaging when a single, static image is of interest, computationally expensive offline iterative reconstruction is still needed to compute the multiple 3D datasets.
Purpose: Evaluate how the number of physiologic bins included in the reconstruction affects the computational cost and resulting image quality of a single, static volume reconstruction.
A similarity-driven multi-dimensional binning algorithm (SIMBA) reconstruction of free-running cardiac magnetic resonance imaging data was previously proposed. While very efficient and fast, the original SIMBA focused only on the reconstruction of a single motion-consistent cluster, discarding the remaining data acquired. However, the redundant data clustered by similarity may be exploited to further improve image quality.
View Article and Find Full Text PDFSystemic sclerosis (SSc) is a rare autoimmune disease characterized by a tripod combining vasculopathy, fibrosis, and immune-mediated inflammatory processes. The prevalence of interstitial lung disease (ILD) in SSc varies according to the methods used to detect it, ranging from 25 to 95%. The fibrotic and vascular pulmonary manifestations of SSc, particularly ILD, are the main causes of morbidity and mortality, contributing to 35% of deaths.
View Article and Find Full Text PDFPurpose: The purpose of this study was to compare ultra-low dose (ULD) and standard low-dose (SLD) chest computed tomography (CT) in terms of radiation exposure, image quality and diagnostic value for diagnosing pulmonary arteriovenous malformation (AVM) in patients with hereditary hemorrhagic telangiectasia (HHT).
Materials And Methods: In this prospective board-approved study consecutive patients with HHT referred to a reference center for screening and/or follow-up chest CT examination were prospectively included from December 2020 to January 2022. Patients underwent two consecutive non-contrast chest CTs without dose modulation (i.
Background: Light chain deposition disease (LCDD) is a very rare entity. Clinical manifestations of LCDD vary according to the organs involved. Data on pulmonary LCDD are scarce and limited to small series or case reports.
View Article and Find Full Text PDFBackground: Free-running cardiac and respiratory motion-resolved whole-heart five-dimensional (5D) cardiovascular magnetic resonance (CMR) can reduce scan planning and provide a means of evaluating respiratory-driven changes in clinical parameters of interest. However, respiratory-resolved imaging can be limited by user-defined parameters which create trade-offs between residual artifact and motion blur. In this work, we develop and validate strategies for both correction of intra-bin and compensation of inter-bin respiratory motion to improve the quality of 5D CMR.
View Article and Find Full Text PDF3D printed biomaterial implants are revolutionizing personalized medicine for tissue repair, especially in orthopedics. In this study, a radiopaque Bi O doped polycaprolactone ( ) composite is developed and implemented to enable the use of diagnostic X-ray technologies, especially photon counting X-ray computed tomography ( ), for comprehensive in vivo device monitoring. PCL filament with homogeneous Bi O nanoparticle ( ) dispersion (0.
View Article and Find Full Text PDFBackground And Objective: Variants in surfactant genes SFTPC or ABCA3 are responsible for interstitial lung disease (ILD) in children and adults, with few studies in adults.
Methods: We conducted a multicentre retrospective study of all consecutive adult patients diagnosed with ILD associated with variants in SFTPC or ABCA3 in the French rare pulmonary diseases network, OrphaLung. Variants and chest computed tomography (CT) features were centrally reviewed.
X-Ray imaging techniques are among the most widely used modalities in medical imaging and their constant evolution has led to the emergence of new technologies. The new generation of computed tomography (CT) systems - spectral photonic counting CT (SPCCT) and X-ray luminescence optical imaging - are examples of such powerful techniques. With these new technologies the rising demand for new contrast agents has led to extensive research in the field of nanoparticles and the possibility to merge the modalities appears to be highly attractive.
View Article and Find Full Text PDF. X-ray spectral computed tomography (CT) allows for material decomposition (MD). This study compared a one-step material decomposition MD algorithm with a two-step reconstruction MD algorithm using acquisitions of a prototype CT scanner with a photon-counting detector (PCD).
View Article and Find Full Text PDFPurpose: The purpose of this study was to compare the performance of Precise IQ Engine (PIQE) and Advanced intelligent Clear-IQ Engine (AiCE) algorithms on image-quality according to the dose level in a cardiac computed tomography (CT) protocol.
Materials And Methods: Acquisitions were performed using the CT ACR 464 phantom at three dose levels (volume CT dose indexes: 7.1/5.