In this paper, we describe a new form of neuro-fuzzy-genetic controller design for nonlinear system derived from a manipulator robot. The proposed method combines fuzzy logic and neuronal networks which are of growing interest in robotics, the neuro-fuzzy controller does not require the knowledge of the robot parameters values. Furtheremore, the genetic algorithms (GAs) for complex motion planning of robots require an evaluation function which takes into account multiple factors.
View Article and Find Full Text PDF