Publications by authors named "Salim R Thabet"

Atherosclerosis is a multifactorial disease that preferentially occurs in arterial regions exposed to d-flow can be used to indicate disturbed flow or disturbed blood flow. The mechanisms by which d-flow induces atherosclerosis involve changes in the transcriptome, methylome, proteome, and metabolome of multiple vascular cells, especially endothelial cells. Initially, we begin with the pathogenesis of atherosclerosis and the changes that occur at multiple levels owing to d-flow, especially in the endothelium.

View Article and Find Full Text PDF

The lymphocyte adaptor protein LNK (also known as SH2B3) is primarily expressed in hematopoietic and endothelial cells, where it functions as a negative regulator of cytokine signaling and cell proliferation. Single-nucleotide polymorphisms in the gene encoding LNK are associated with autoimmune and cardiovascular disorders; however, it is not known how LNK contributes to hypertension. Here, we determined that loss of LNK exacerbates angiotensin II-induced (Ang II-induced) hypertension and the associated renal and vascular dysfunction.

View Article and Find Full Text PDF

Ample genetic and physiological evidence establishes that renal salt handling is a critical regulator of blood pressure. Studies also establish a role for the immune system, T-cell infiltration, and immune cytokines in hypertension. This study aimed to connect immune cytokines, specifically interferon-γ (IFN-γ) and interleukin-17A (IL-17A), to sodium transporter regulation in the kidney during angiotensin-II (Ang-II) hypertension.

View Article and Find Full Text PDF

Recent studies have emphasized a role of adaptive immunity, and particularly T cells, in the genesis of hypertension. We sought to determine the T-cell subtypes that contribute to hypertension and renal inflammation in angiotensin II-induced hypertension. Using T-cell receptor spectratyping to examine T-cell receptor usage, we demonstrated that CD8(+) cells, but not CD4(+) cells, in the kidney exhibited altered T-cell receptor transcript lengths in Vβ3, 8.

View Article and Find Full Text PDF

Rationale: Aortic stiffening commonly occurs in hypertension and further elevates systolic pressure. Hypertension is also associated with vascular inflammation and increased mechanical stretch. The interplay between inflammation, mechanical stretch, and aortic stiffening in hypertension remains undefined.

View Article and Find Full Text PDF

Rationale: We have previously found that T lymphocytes are essential for development of angiotensin II-induced hypertension; however, the mechanisms responsible for T-cell activation in hypertension remain undefined.

Objective: We sought to study the roles of the CNS and pressure elevation in T-cell activation and vascular inflammation caused by angiotensin II.

Methods And Results: To prevent the central actions of angiotensin II, we created anteroventral third cerebral ventricle (AV3V) lesions in mice.

View Article and Find Full Text PDF