Background: Polymethylmethacrylate (PMMA) bone cement is extensively used in spinal procedures such as vertebroplasty and kyphoplasty, while its use in percutaneous cement discoplasty (PCD) is not yet widely spread. A main issue for both application sites, vertebra and disc, is the mismatch in stiffness between cement and bone, potentially resulting in adjacent vertebral fractures and adjacent segment disease. Tailoring the cement modulus using additives is hence an interesting strategy.
View Article and Find Full Text PDFMinimally invasive spine treatments have been sought after for elderly patients with comorbidities suffering from advanced degenerative disc disease. Percutaneous cement discoplasty (PCD) is one such technique where cement is injected into a degenerated disc with a vacuum phenomenon to relieve patients from pain. Adjacent vertebral fractures (AVFs) are however an inherent risk, particularly for osteoporotic patients, due to the high stiffness of the used cements.
View Article and Find Full Text PDFFront Bioeng Biotechnol
September 2022
Percutaneous Cement Discoplasty (PCD) is a surgical technique developed to relieve pain in patients with advanced degenerative disc disease characterized by a vacuum phenomenon. It has been hypothesized that injecting bone cement into the disc improves the overall stability of the spinal segment. However, there is limited knowledge on the biomechanics of the spine postoperatively and a lack of models to assess the effect of PCD .
View Article and Find Full Text PDF