A majority of short peptide (≤7 amino acids) hydrogels are primarily assembled via cross β-structure formation. In contrast to the natural trend, herein, we report the formation of supramolecular hydrogel from the ultrashort hybrid folded peptide composed of canonical α-amino acid and noncanonical γ-amino acid, Fmoc-γPhe-Phe-OH. The designed hybrid peptide hydrogel is composed of entangled fibers, has viscoelastic properties, exhibits proteolytic stability, and exhibits cytocompatibility with L929 fibroblast cells.
View Article and Find Full Text PDFIn contrast to short helical peptides, constrained peptides, and foldamers, the design and fabrication of crystalline 3D frameworks from the β-sheet peptides are rare because of their high self-aggregation propensity to form 1D architectures. Herein, we demonstrate the formation of a 3D porous honeycomb framework through the silver coordination of a minimal β-sheet forming a peptide having terminal metal coordinated 4- and 3-pyridyl ligands.
View Article and Find Full Text PDF