Publications by authors named "Salil Apte"

Feedback of power during running is a promising tool for training and determining pacing strategies. However, current power estimation methods show low validity and are not customized for running on different slopes. To address this issue, we developed three machine-learning models to estimate peak horizontal power for level, uphill, and downhill running using gait spatiotemporal parameters, accelerometer, and gyroscope signals extracted from foot-worn IMUs.

View Article and Find Full Text PDF

The Agility T-test is a standardized method to measure the change-of-direction (COD) ability of athletes in the field. It is traditionally scored based on the total completion time, which does not provide information on the different CODs. Augmenting the T-test with wearable sensors provides the opportunity to explore new metrics.

View Article and Find Full Text PDF

Running mechanics are modifiable with training and adopting an economical running technique can improve running economy and hence performance. While field measurement of running economy is cumbersome, running mechanics can be assessed accurately and conveniently using wearable inertial measurement units (IMUs). In this work, we extended this wearables-based approach to the Cooper test, by assessing the relative contribution of running biomechanics to the endurance performance.

View Article and Find Full Text PDF

The aim of this study was to estimate the temporal gait parameters using a wrist-worn Inertial Measurement Unit (IMU) during an outdoor run. While it is easier to compute running gait parameters using foot IMUs, a wrist IMU is more convenient and less obtrusive when it comes to data acquisition. During a track run of 12 minutes, we equipped 14 highly-trained male runners with one IMU on the wrist and one on each foot.

View Article and Find Full Text PDF

Understanding the influence of running-induced acute fatigue on the homeostasis of the body is essential to mitigate the adverse effects and optimize positive adaptations to training. Fatigue is a multifactorial phenomenon, which influences biomechanical, physiological, and psychological facets. This work aimed to assess the evolution of these three facets with acute fatigue during a half-marathon.

View Article and Find Full Text PDF

To investigate (i) typical protocols used in research on biomechanical response to running-induced fatigue, (ii) the effect of sport-induced acute fatigue on the biomechanics of running and functional tests, and (iii) the consistency of analyzed parameter trends across different protocols. Scopus, Web of Science, Pubmed, and IEEE databases were searched using terms identified with the Population, Interest and Context (PiCo) framework. Studies were screened following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and appraised using the methodological index for non-randomized studies MINORS scale.

View Article and Find Full Text PDF

Power-Force-Velocity profile obtained during a sprint test is crucial for designing personalized training and evaluating injury risks. Estimation of instantaneous velocity is requisite for developing these profiles and the predominant method for this estimation assumes it to have a first order exponential behavior. While this method remains appropriate for maximal sprints, the sprint velocity profile may not always show a first-order exponential behavior.

View Article and Find Full Text PDF

Background: Gait training with partial body weight support (BWS) has become an established rehabilitation technique. Besides passive unloading mechanisms such as springs or counterweights, also active systems that allow rendering constant or modulated vertical forces have been proposed. However, only pilot studies have been conducted to compare different unloading or modulation strategies, and conducting experimental studies is costly and time-consuming.

View Article and Find Full Text PDF

The original article [1] contained a major error whereby Figure 1 mistakenly displayed a duplicate of Figure 5.

View Article and Find Full Text PDF

Background: Body weight support (BWS) systems have shown promise as rehabilitation tools for neurologically impaired individuals. This paper reviews the experiment-based research on BWS systems with the aim: (1) To investigate the influence of body weight unloading (BWU) on gait characteristics; (2) To study whether the effects of BWS differ between treadmill and overground walking and (3) To investigate if modulated BWU influences gait characteristics less than unmodulated BWU.

Method: A systematic literature search was conducted in the following search engines: Pubmed, Scopus, Web of Science and Google Scholar.

View Article and Find Full Text PDF