Publications by authors named "Salido R"

Unlabelled: Large-scale studies are essential to answer questions about complex microbial communities that can be extremely dynamic across hosts, environments, and time points. However, managing acquisition, processing, and analysis of large numbers of samples poses many challenges, with cross-contamination being the biggest obstacle. Contamination complicates analysis and results in sample loss, leading to higher costs and constraints on mixed sample type study designs.

View Article and Find Full Text PDF

The maturation of genomic surveillance in the past decade has enabled tracking of the emergence and spread of epidemics at an unprecedented level. During the COVID-19 pandemic, for example, genomic data revealed that local epidemics varied considerably in the frequency of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage importation and persistence, likely due to a combination of COVID-19 restrictions and changing connectivity. Here, we show that local COVID-19 epidemics are driven by regional transmission, including across international boundaries, but can become increasingly connected to distant locations following the relaxation of public health interventions.

View Article and Find Full Text PDF

Background: Dyslipidemia is treated effectively with statins, but treatment has the potential to induce new-onset type-2 diabetes. Gut microbiota may contribute to this outcome variability. We assessed the associations of gut microbiota diversity and composition with statins.

View Article and Find Full Text PDF

Next-generation sequencing technologies have enabled many advances across diverse areas of biology, with many benefiting from increased sample size. Although the cost of running next-generation sequencing instruments has dropped substantially over time, the cost of sample preparation methods has lagged behind. To counter this, researchers have adapted library miniaturization protocols and large sample pools to maximize the number of samples that can be prepared by a certain amount of reagents and sequenced in a single run.

View Article and Find Full Text PDF

Background: Atrial fibrillation (AF) is an important heart rhythm disorder in aging populations. The gut microbiome composition has been previously related to cardiovascular disease risk factors. Whether the gut microbial profile is also associated with the risk of AF remains unknown.

View Article and Find Full Text PDF

Background: Schools are high-risk settings for SARS-CoV-2 transmission, but necessary for children's educational and social-emotional wellbeing. Previous research suggests that wastewater monitoring can detect SARS-CoV-2 infections in controlled residential settings with high levels of accuracy. However, its effective accuracy, cost, and feasibility in non-residential community settings is unknown.

View Article and Find Full Text PDF

Despite advances in sequencing, lack of standardization makes comparisons across studies challenging and hampers insights into the structure and function of microbial communities across multiple habitats on a planetary scale. Here we present a multi-omics analysis of a diverse set of 880 microbial community samples collected for the Earth Microbiome Project. We include amplicon (16S, 18S, ITS) and shotgun metagenomic sequence data, and untargeted metabolomics data (liquid chromatography-tandem mass spectrometry and gas chromatography mass spectrometry).

View Article and Find Full Text PDF
Article Synopsis
  • Effective detection of SARS-CoV-2 variants through wastewater analysis can complement existing clinical testing methods, especially in resource-limited areas where traditional testing may be biased.* -
  • The study implemented improved virus concentration techniques and software to enhance the sequencing of multiple virus strains from wastewater, resulting in high-resolution data over 295 days at a university and its surrounding county.* -
  • Wastewater surveillance identified emerging variants up to 14 days earlier than clinical methods and revealed instances of virus spread that clinical testing missed, highlighting its potential for public health monitoring.*
View Article and Find Full Text PDF

The chemistry of indoor surfaces and the role of microbes in shaping and responding to that chemistry are largely unexplored. We found that, over 1 month, people's presence and activities profoundly reshaped the chemistry of a house. Molecules associated with eating/cooking, bathroom use, and personal care were found throughout the entire house, while molecules associated with medications, outdoor biocides, and microbially derived compounds were distributed in a location-dependent manner.

View Article and Find Full Text PDF

Microbial communities contain a broad phylogenetic diversity of organisms; however, the majority of methods center on describing bacteria and archaea. Fungi are important symbionts in many ecosystems and are potentially important members of the human microbiome, beyond those that can cause disease. To expand our analysis of microbial communities to include data from the fungal internal transcribed spacer (ITS) region, five candidate DNA extraction kits were compared against our standardized protocol for describing bacteria and archaea using 16S rRNA gene amplicon- and shotgun metagenomics sequencing.

View Article and Find Full Text PDF

Surface sampling for SARS-CoV-2 RNA detection has shown considerable promise to detect exposure of built environments to infected individuals shedding virus who would not otherwise be detected. Here, we compare two popular sampling media (VTM and SDS) and two popular workflows (Thermo and PerkinElmer) for implementation of a surface sampling program suitable for environmental monitoring in public schools. We find that the SDS/Thermo pipeline shows superior sensitivity and specificity, but that the VTM/PerkinElmer pipeline is still sufficient to support surface surveillance in any indoor setting with stable cohorts of occupants (e.

View Article and Find Full Text PDF
Article Synopsis
  • A study investigates using sentinel cards for monitoring SARS-CoV-2 traces in indoor environments, especially schools, to support safe in-person learning.* -
  • The research tests various cleaning solutions to maintain the effectiveness of these cards while preventing interference from previously detected viral loads.* -
  • RNase Away proved the best cleaner for all conditions, helping differentiate between new infections and residual virus, thereby offering a practical monitoring solution in settings with privacy concerns.*
View Article and Find Full Text PDF
Article Synopsis
  • Monitoring SARS-CoV-2 on surfaces can help identify past exposure, especially in places like hospitals and schools, by detecting viral RNA left by infected individuals.
  • A study collected samples from isolation housing units to investigate where SARS-CoV-2 accumulates, finding high viral loads on frequently touched surfaces like light switches but also on untouched ones like floors.
  • The bacterial community in these environments seems to predict the presence of SARS-CoV-2, suggesting a potential link between certain bacterial types and higher viral detection.
View Article and Find Full Text PDF

As SARS-CoV-2 continues to spread and evolve, detecting emerging variants early is critical for public health interventions. Inferring lineage prevalence by clinical testing is infeasible at scale, especially in areas with limited resources, participation, or testing/sequencing capacity, which can also introduce biases. SARS-CoV-2 RNA concentration in wastewater successfully tracks regional infection dynamics and provides less biased abundance estimates than clinical testing.

View Article and Find Full Text PDF
Article Synopsis
  • - Monitoring the presence of SARS-CoV-2 on surfaces helps to identify past exposures to infected individuals, assisting in tracking the virus’s spread, particularly in areas like hospitals and schools.
  • - Research indicates that the highest viral loads are found on frequently touched surfaces (e.g., light switches, faucets), with detectable levels also present on non-touched surfaces, making sampling strategies important for environments where people are mask-wearing.
  • - The study also linked SARS-CoV-2 levels to the surrounding bacterial community, finding that certain bacterial species can predict the likelihood of samples being positive for the virus, emphasizing the relationship between surface type and viral presence.
View Article and Find Full Text PDF
Article Synopsis
  • - Environmental monitoring can help identify surfaces contaminated with COVID-19, providing crucial data for infection control and quarantine measures.
  • - Research shows that the detection of viral RNA using RT-qPCR on surfaces remains stable for up to 7 days, with differences in signal intensity based on surface material (rough vs. smooth).
  • - These findings highlight the need for cleaning surfaces after sampling to track virus decay and indicate that heat-inactivated viral particles can improve the efficiency of environmental monitoring in public health settings.
View Article and Find Full Text PDF

Background: Schools are high-risk settings for SARS-CoV-2 transmission, but necessary for children's educational and social-emotional wellbeing. Previous research suggests that wastewater monitoring can detect SARS-CoV-2 infections in controlled residential settings with high levels of accuracy. However, its effective accuracy, cost, and feasibility in non-residential community settings is unknown.

View Article and Find Full Text PDF

Environmental monitoring in public spaces can be used to identify surfaces contaminated by persons with COVID-19 and inform appropriate infection mitigation responses. Research groups have reported detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) on surfaces days or weeks after the virus has been deposited, making it difficult to estimate when an infected individual may have shed virus onto a SARS-CoV-2 positive surface, which in turn complicates the process of establishing effective quarantine measures. In this study, we determined that reverse transcription-quantitative polymerase chain reaction (RT-qPCR) detection of viral RNA from heat-inactivated particles experiences minimal decay over seven days of monitoring on eight out of nine surfaces tested.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers analyzed samples from 972 individuals and surfaces in hospitals, revealing that 16% of surfaces had detectable SARS-CoV-2 RNA, with the highest prevalence found on floors near patient beds.
  • * A specific type of bacteria from the genus Rothia was identified as a strong predictor of SARS-CoV-2 presence across various sample types, highlighting the complex interactions between bacteria and viral infections in medical environments.
View Article and Find Full Text PDF

Background: Diet has a major influence on the human gut microbiota, which has been linked to health and disease. However, epidemiological studies on associations of a healthy diet with the microbiota utilizing a whole-diet approach are still scant.

Objectives: To assess associations between healthy food choices and human gut microbiota composition, and to determine the strength of association with functional potential.

View Article and Find Full Text PDF

The collection of fecal material and developments in sequencing technologies have enabled standardised and non-invasive gut microbiome profiling. Microbiome composition from several large cohorts have been cross-sectionally linked to various lifestyle factors and diseases. In spite of these advances, prospective associations between microbiome composition and health have remained uncharacterised due to the lack of sufficiently large and representative population cohorts with comprehensive follow-up data.

View Article and Find Full Text PDF

One goal of microbial ecology researchers is to capture the maximum amount of information from all organisms in a sample. The recent COVID-19 pandemic, caused by the RNA virus SARS-CoV-2, has highlighted a gap in traditional DNA-based protocols, including the high-throughput methods the authors previously established as field standards. To enable simultaneous SARS-CoV-2 and microbial community profiling, the authors compared the relative performance of two total nucleic acid extraction protocols with the authors' previously benchmarked protocol.

View Article and Find Full Text PDF

Synergistic effects of bacteria on viral stability and transmission are widely documented but remain unclear in the context of SARS-CoV-2. We collected 972 samples from hospitalized ICU patients with coronavirus disease 2019 (COVID-19), their health care providers, and hospital surfaces before, during, and after admission. We screened for SARS-CoV-2 using RT-qPCR, characterized microbial communities using 16S rRNA gene amplicon sequencing, and contextualized the massive microbial diversity in this dataset in a meta-analysis of over 20,000 samples.

View Article and Find Full Text PDF

Unlabelled: One goal among microbial ecology researchers is to capture the maximum amount of information from all organisms in a sample. The recent COVID-19 pandemic, caused by the RNA virus SARS-CoV-2, has highlighted a gap in traditional DNA-based protocols, including the high-throughput methods we previously established as field standards. To enable simultaneous SARS-CoV-2 and microbial community profiling, we compare the relative performance of two total nucleic acid extraction protocols and our previously benchmarked protocol.

View Article and Find Full Text PDF