Different health management strategies may need to be implemented in different regions to cope with diseases. The current work aims to evaluate the relationship between air quality parameters and the number of new COVID-19 cases in two different geographical locations, namely Western Anatolia and Western Black Sea in Turkey. Principal component analysis (PCA) and regression model were utilized to describe the effect of environmental parameters (air quality and meteorological parameters) on the number of new COVID-19 cases.
View Article and Find Full Text PDFRemediation by algae is a very effective strategy for avoiding the use of costly, environmentally harmful chemicals in wastewater treatment. Recently, industries based on biomass, especially the bioenergy sector, are getting increasing attention due to their environmental acceptability. However, their practical application is still limited due to the growing cost of raw materials such as algal biomass, harvesting and processing limitations.
View Article and Find Full Text PDFA halotolerant biosurfactant producer Pseudomonas aeruginosa strain NSH3 (NCBI Gene Bank Accession No. MN149622) was isolated to degrade high concentrations of recalcitrant polyaromatic hydrocarbons (PAHs) and polyaromatic heterocyclic sulfur compounds (PASHs). In biphasic batch bioreactors, the biodegradation and biosurfactant-production activities of NSH3 have been significantly enhanced (p < 0.
View Article and Find Full Text PDFIn this study, acrylonitrile butadiene styrene (ABS)/talc/graphene oxide/SEBS-g-MAH (ABS/Talc/GO/SEBS-g-MAH) and acrylonitrile butadiene styrene/graphene oxide/SEBS-g-MAH (ABS/GO/SEBS-g-MAH) composites were isolated with varying graphene oxide (0.5 to 2.0 phr) as a filler and SEBS-g-MAH as a compatibilizer (4 to 8 phr), with an ABS:talc ratio of 90:10 by percentage.
View Article and Find Full Text PDFThis article provides data regarding the performance of zinc sulphate as a coagulant for treating rubber industry wastewater. The effect of four factors on removal efficiency of nine parameters is investigated, namely: pH, mixing speed, dosage of coagulant (zinc sulphate) and retention time. Response surface methodology was used to investigate the effect of selected variables.
View Article and Find Full Text PDFOne of the main precursors of air pollution and acid rains is the presence of the recalcitrant thiophenic compounds, for example dibenzothiophene (DBT) and its derivatives in transportation fuels. In an attempt to achieve the worldwide regulations of ultra-low sulfur transportation fuels without affecting its hydrocarbon skeleton, a biphasic medium containing 100 mg/L DBT dissolved in n-hexadecane (1/4 oil/water v/v) used for enrichment and isolation of selective biodesulfurizing bacterium from an oil-polluted sediment sample collected from Egyptian Red Sea shoreline. The isolated bacterium is facultative anaerobe, motile, spore-former, and mesophile.
View Article and Find Full Text PDFIn this study, a novel bioflocculant QZ-7 was produced from 139SI for industrial wastewater treatment. Biochemical analysis, FTIR, scanning electron microscopy-energy dispersive X-ray spectroscopy, and thermogravimetric analysis were performed. A synthetic wastewater sample was used to validate the performance of the prepared OZ-7 for the adsorption efficiency of As, Zn Pb, Cu, and Cd under optimal experimental conditions such as initial metal concentrations, pH, contact time (h) and QZ-7 adsorbent dosage (mg mL).
View Article and Find Full Text PDFIn this study, tannin-based natural coagulant was used to treat stabilized landfill leachate. Tannin modified with amino group was utilized for the treatment process. Central composite design (CCD) was used to investigate and optimize the effect of tannin dosage and pH on four responses.
View Article and Find Full Text PDFThis article presents data relating to the changes in absorbance of glucose during the acid hydrolysis of sugarcane bagasse using sulphuric acid. This dataset also contains the moisture content, volatile matter, and fixed carbon of the sugarcane bagasse. The results of the analysis of variance (ANOVA) and the interaction plots between reaction time, temperature, and ratio are also presented.
View Article and Find Full Text PDFAlthough landfilling is still the most suitable method for solid waste disposal, generation of large quantity of leachate is still considered as one of the main environmental problem. Efficient treatment of leachate is required prior to final discharge. Persulfate (SO) recently used for leachate oxidation, the oxidation potential of persulfate can be improved by activate and initiate sulfate radical.
View Article and Find Full Text PDFWastewater treatment is a key challenge in the textile industry. The current treatment methods for textile wastewater are insufficient or ineffective for complex dyes generated from the textile industry. This study evaluated the performances of two novel inorganic coagulants with high cationic charges, namely, titanium tetrachloride (TiCl) and zirconium tetrachloride (ZrCl).
View Article and Find Full Text PDFLandfills are one of the main point sources of groundwater pollution. This research mainly aims to assess the risk of nitrate [Formula: see text] transport from the unlined landfill to subsurface layers and groundwater using experimental results and the SESOIL model. Samples from 12 groundwater wells downstream of the landfill were collected and analyzed in 2008, 21 years after the landfill construction.
View Article and Find Full Text PDFMalaysia alone produces more than 49 million m palm oil mill effluent per year. Biological treated palm oil mill effluent via ponding system often fails to fulfill the regulatory discharge standards. This is due to remaining of non-biodegradable organics in the treated effluent.
View Article and Find Full Text PDFThe aim of the current study is to evaluate the effectiveness of combined persulphate with hydrogen peroxide (SO/HO) oxidation as a post-treatment of biologically treated palm oil mill effluent (POME) for the first time in the literature. The removal efficiencies of chemical oxygen demand (COD), ammoniacal nitrogen (NH-N), and suspended solids (SS) were 36.8%, 47.
View Article and Find Full Text PDFThe aim of this study is to investigate the performance of combined solar photo-catalyst of titanium oxide/zinc oxide (TiO/ZnO) with aeration processes to treat petroleum wastewater. Central composite design with response surface methodology was used to evaluate the relationships between operating variables for TiO dosage, ZnO dosage, air flow, pH, and reaction time to identify the optimum operating conditions. Quadratic models for chemical oxygen demand (COD) and total organic carbon (TOC) removals prove to be significant with low probabilities (<0.
View Article and Find Full Text PDFAs the ponding system used to treat palm oil mill effluent (POME) frequently fails to satisfy the discharge standard in Malaysia, the present study aimed to resolve this problem using an optimized electrocoagulation process. Thus, a central composite design (CCD) module in response surface methodology was employed to optimize the interactions of process variables, namely current density, contact time and initial pH targeted on maximum removal of chemical oxygen demand (COD), colour and turbidity with satisfactory pH of discharge POME. The batch study was initially designed by CCD and statistical models of responses were subsequently derived to indicate the significant terms of interactive process variables.
View Article and Find Full Text PDFPichia veronae strain HSC-22 (accession number KP012558) showed a good tolerance to relatively high temperature, ethanol and sugar concentrations. Response surface optimization based on central composite design of experiments predicted the optimal values of the influencing parameters that affect the production of bioethanol from sugarcane molasses to be as follows: initial pH 5, 25% (w : v) initial molasses concentration, 35°C, 116 rpm, and 60 h. Under these optimum operating conditions the maximum bioethanol production on a batch fermenter scale was recorded as 32.
View Article and Find Full Text PDFThe objective of this study was to investigate the performance of employing H2O2 reagent in persulfate activation to treat stabilized landfill leachate. A central composite design (CCD) with response surface methodology (RSM) was applied to evaluate the relationships between operating variables, such as persulfate and H2O2 dosages, pH, and reaction time, to identify the optimum operating conditions. Quadratic models for the following two responses proved to be significant with very low probabilities (<0.
View Article and Find Full Text PDFA combination of persulfate and hydrogen peroxide (S2O8(2-)/H2O2) was used to oxidizelandfill leachate. The reaction was performed under varying S2O8(2-)/H2O2 ratio (g/g), S2O8(2-)/H2O2 dosages (g/g), pH, and reaction time (minutes), so as to determine the optimum operational conditions. Results indicated that under optimum operational conditions (i.
View Article and Find Full Text PDFBackground: Worldwide nowadays, relying on the second generation bioethanol from the lignocellulosic feedstock is a mandatory aim. However, one of the major drawbacks for high ethanol yield is the physical and chemical pretreatment of this kind of feedstock. As the pretreatment is a crucial process operation that modifies the lignocellulosic structure and enhances its accessibility for the high cost hydrolytic enzymes in an attempt to maximize the yield of the fermentable sugars.
View Article and Find Full Text PDFBackground: Worldwide nowadays, relying on the second generation bioethanol from the lignocellulosic feedstock is a mandatory aim. However, one of the major drawbacks for high ethanol yield is the physical and chemical pretreatment of this kind of feedstock. As the pretreatment is a crucial process operation that modifies the lignocellulosic structure and enhances its accessibility for the high cost hydrolytic enzymes in an attempt to maximize the yield of the fermentable sugars.
View Article and Find Full Text PDFThe current study investigated the effects of S2O8(2-) and S2O8(2-)/H2O2 oxidation processes on the biodegradable characteristics of an anaerobic stabilized leachate. Total COD removal efficiency was found to be 46% after S2O8(2-) oxidation (using 4.2 g S2O8(2-)/1g COD0, at pH 7, for 60 min reaction time and at 350 rpm shaking speed), and improved to 81% following S2O8(2-)/H2O2 oxidation process (using 5.
View Article and Find Full Text PDFInt J Biomater
November 2014
This work illustrates a comparative study on the applicability of the basic heterogeneous calcium oxide catalyst prepared from waste mollusks and crabs shells (MS and CS, resp.) in the transesterification of waste cooking oil collected from seafood restaurants with methanol for production of biodiesel. Response surface methodology RSM based on D-optimal deign of experiments was employed to study the significance and interactive effect of methanol to oil M : O molar ratio, catalyst concentration, reaction time, and mixing rate on biodiesel yield.
View Article and Find Full Text PDFA statistical model was developed in this study to describe bioethanol production through a batch fermentation process of sugarcane molasses by locally isolated Saccharomyces cerevisiae Y-39. Response surface methodology RSM based on central composite face centered design CCFD was employed to statistically evaluate and optimize the conditions for maximum bioethanol production and study the significance and interaction of incubation period, initial pH, incubation temperature, and molasses concentration on bioethanol yield. With the use of the developed quadratic model equation, a maximum ethanol production of 255 g/L was obtained in a batch fermentation process at optimum operating conditions of approximately 71 h, pH 5.
View Article and Find Full Text PDFThe objective of this study was to investigate the performance of employing persulfate reagent in the advanced oxidation of ozone to treat stabilized landfill leachate in an ozone reactor. A central composite design (CCD) with response surface methodology (RSM) was applied to evaluate the relationships between operating variables, such as ozone and persulfate dosages, pH, and reaction time, to identify the optimum operating conditions. Quadratic models for the following four responses proved to be significant with very low probabilities (<0.
View Article and Find Full Text PDF