Publications by authors named "Salem Khalifa"

The killer phenomenon in yeast () not only provides the opportunity to study host-virus interactions in a eukaryotic model but also represents a powerful tool to analyze potential coadaptional events and the role of killer yeast in biological diversity. Although undoubtedly having a crucial impact on the abundance and expression of the killer phenotype in killer-yeast harboring communities, the influence of a particular toxin on its producing host cell has not been addressed sufficiently. In this study, we describe a model system of two K1 killer yeast strains with distinct phenotypical differences pointing to substantial selection pressure in response to the toxin secretion level.

View Article and Find Full Text PDF

The K1 A/B toxin secreted by virus-infected strains kills sensitive cells via disturbance of cytoplasmic membrane functions. Despite decades of research, the mechanisms underlying K1 toxicity and immunity have not been elucidated yet. In a novel approach, this study aimed to characterize transcriptome changes in K1-treated sensitive yeast cells in a time-dependent manner.

View Article and Find Full Text PDF

Background: Pancreatic ductal adenocarcinoma (PDA) is a highly lethal disease; a prominent desmoplastic reaction is a defining characteristic. Fibrillar collagens, such as collagen I and to a lesser extent, collagens III and V, comprise the majority of this stromal fibrosis. Type VI collagen (COL6) forms a microfibrillar network associated with type I collagen fibrils.

View Article and Find Full Text PDF