Van der Waals (vdWs) heterostructures, assembled by stacking of two-dimensional (2D) crystal layers, have emerged as a promising new material system for high-performance optoelectronic applications, such as thin film transistors, photodetectors, and light-emitters. In this study, we showcase an innovative device that leverages strain-tuning capabilities, utilizing a MoS/SbTe vdWs p-n heterojunction architecture designed explicitly for photodetection across the visible to near-infrared spectrum. These heterojunction devices provide ultra-low dark currents as small as 4.
View Article and Find Full Text PDFTopological insulators have shown great potential for future optoelectronic technology due to their extraordinary optical and electrical properties. Photodetectors, as one of the most widely used optoelectronic devices, are crucial for sensing, imaging, communication, and optical computing systems to convert optical signals to electrical signals. Here we experimentally show a novel combination of topological insulators (TIs) and transition metal chalcogenides (TMDs) based self-powered photodetectors with ultra-low dark current and high sensitivity.
View Article and Find Full Text PDF