Publications by authors named "Sale W"

To identify proteins specific to the proximal ciliary axoneme, we used iTRAQ to compare short (~2 μm) and full-length (~11 μm) axonemes of Chlamydomonas. Known components of the proximal axoneme such as minor dynein heavy chains and LF5 kinase as well as the ciliary tip proteins FAP256 (CEP104) and EB1 were enriched in short axonemes whereas proteins present along the length of the axoneme were of similar abundance in both samples. The iTRAQ analysis revealed that FAP93, a protein of unknown function, and protein phosphatase 2A (PP2A) are enriched in the short axonemes.

View Article and Find Full Text PDF

Motile cilia (also interchangeably called "flagella") are conserved organelles extending from the surface of many animal cells and play essential functions in eukaryotes, including cell motility and environmental sensing. Large motor complexes, the ciliary dyneins, are present on ciliary outer-doublet microtubules and drive movement of cilia. Ciliary dyneins are classified into two general types: the outer dynein arms (ODAs) and the inner dynein arms (IDAs).

View Article and Find Full Text PDF

Ciliary dyneins are preassembled in the cytoplasm before being transported into cilia, and a family of proteins containing the PIH1 domain, PIH proteins, are involved in the assembly process. However, the functional differences and relationships between members of this family of proteins remain largely unknown. Using Chlamydomonas reinhardtii as a model, we isolated and characterized two novel Chlamydomonas PIH preassembly mutants, mot48-2 and twi1-1.

View Article and Find Full Text PDF

Motility of cilia (also known as flagella in some eukaryotes) is based on axonemal doublet microtubule sliding that is driven by the dynein molecular motors. Dyneins are organized into intricately patterned inner and outer rows of arms, whose collective activity is to produce inter-microtubule movement. However, to generate a ciliary bend, not all dyneins can be active simultaneously.

View Article and Find Full Text PDF

We determined how the ciliary motor I1 dynein is transported. A specialized adapter, IDA3, facilitates I1 dynein attachment to the ciliary transporter called intraflagellar transport (IFT). Loading of IDA3 and I1 dynein on IFT is regulated by ciliary length.

View Article and Find Full Text PDF

Cytoplasmic assembly of ciliary dyneins, a process known as preassembly, requires numerous non-dynein proteins, but the identities and functions of these proteins are not fully elucidated. Here, we show that the classical Chlamydomonas motility mutant pf23 is defective in the Chlamydomonas homolog of DYX1C1. The pf23 mutant has a 494 bp deletion in the DYX1C1 gene and expresses a shorter DYX1C1 protein in the cytoplasm.

View Article and Find Full Text PDF

Ciliary motility is crucial for the development and health of many organisms. Motility depends on the coordinated activity of multiple dynein motors arranged in a precise pattern on the outer doublet microtubules. Although significant progress has been made in elucidating the composition and organization of the dyneins, a comprehensive understanding of dynein regulation is lacking.

View Article and Find Full Text PDF

Chlamydomonas reinhardtii is an outstanding model genetic organism for study of assembly of cilia. Here, methods are described for synchronization of ciliary regeneration in Chlamydomonas to analyze the sequence in which ciliary proteins assemble. In addition, the methods described allow analysis of the mechanisms involved in regulation of ciliary length, the proteins required for ciliary assembly, and the temporal expression of genes encoding ciliary proteins.

View Article and Find Full Text PDF

We developed quantitative assays to test the hypothesis that the N-DRC is required for integrity of the ciliary axoneme. We examined reactivated motility of demembranated drc cells, commonly termed "reactivated cell models." ATP-induced reactivation of wild-type cells resulted in the forward swimming of ∼90% of cell models.

View Article and Find Full Text PDF

Alcohol abuse results in an increased incidence of pulmonary infection, in part attributable to impaired mucociliary clearance. Analysis of motility in mammalian airway cilia has revealed that alcohol impacts the ciliary dynein motors by a mechanism involving altered axonemal protein phosphorylation. Given the highly conserved nature of cilia, it is likely that the mechanisms for alcohol-induced ciliary dysfunction (AICD) are conserved.

View Article and Find Full Text PDF

Radial spokes are conserved macromolecular complexes that are essential for ciliary motility. A triplet of three radial spokes, RS1, RS2, and RS3, repeats every 96 nm along the doublet microtubules. Each spoke has a distinct base that docks to the doublet and is linked to different inner dynein arms.

View Article and Find Full Text PDF

Kinesin-13, an end depolymerizer of cytoplasmic and spindle microtubules, also affects the length of cilia. However, in different models, depletion of kinesin-13 either lengthens or shortens cilia, and therefore the exact function of kinesin-13 in cilia remains unclear. We generated null mutations of all kinesin-13 paralogues in the ciliate Tetrahymena.

View Article and Find Full Text PDF

The motile cilium is a mechanical wonder, a cellular nanomachine that produces a high-speed beat based on a cycle of bends that move along an axoneme made of 9+2 microtubules. The molecular motors, dyneins, power the ciliary beat. The dyneins are compacted into inner and outer dynein arms, whose activity is highly regulated to produce microtubule sliding and axonemal bending.

View Article and Find Full Text PDF

To determine mechanisms of assembly of ciliary dyneins, we focused on the Chlamydomonas inner dynein arm, I1 dynein, also known as dynein f. I1 dynein assembles in the cytoplasm as a 20S complex similar to the 20S I1 dynein complex isolated from the axoneme. The intermediate chain subunit, IC140 (IDA7), and heavy chains (IDA1, IDA2) are required for 20S I1 dynein preassembly in the cytoplasm.

View Article and Find Full Text PDF

Assembly of cilia and flagella requires intraflagellar transport (IFT), a highly regulated kinesin-based transport system that moves cargo from the basal body to the tip of flagella [1]. The recruitment of IFT components to basal bodies is a function of flagellar length, with increased recruitment in rapidly growing short flagella [2]. The molecular pathways regulating IFT are largely a mystery.

View Article and Find Full Text PDF

To address the mechanisms of ciliary radial spoke assembly, we took advantage of the Chlamydomonas pf27 mutant. The radial spokes that assemble in pf27 are localized to the proximal quarter of the axoneme, but otherwise are fully assembled into 20S radial spoke complexes competent to bind spokeless axonemes in vitro. Thus, pf27 is not defective in radial spoke assembly or docking to the axoneme.

View Article and Find Full Text PDF

Axonemal dyneins must be precisely regulated and coordinated to produce ordered ciliary/flagellar motility, but how this is achieved is not understood. We analyzed two Chlamydomonas reinhardtii mutants, mia1 and mia2, which display slow swimming and low flagellar beat frequency. We found that the MIA1 and MIA2 genes encode conserved coiled-coil proteins, FAP100 and FAP73, respectively, which form the modifier of inner arms (MIA) complex in flagella.

View Article and Find Full Text PDF

The nexin-dynein regulatory complex (N-DRC) is proposed to coordinate dynein arm activity and interconnect doublet microtubules. Here we identify a conserved region in DRC4 critical for assembly of the N-DRC into the axoneme. At least 10 subunits associate with DRC4 to form a discrete complex distinct from other axonemal substructures.

View Article and Find Full Text PDF

Primary ciliary dyskinesia (PCD) is characterized by dysfunction of respiratory cilia and sperm flagella and random determination of visceral asymmetry. Here, we identify the DRC1 subunit of the nexin-dynein regulatory complex (N-DRC), an axonemal structure critical for the regulation of dynein motors, and show that mutations in the gene encoding DRC1, CCDC164, are involved in PCD pathogenesis. Loss-of-function mutations disrupting DRC1 result in severe defects in assembly of the N-DRC structure and defective ciliary movement in Chlamydomonas reinhardtii and humans.

View Article and Find Full Text PDF

The formation and function of eukaryotic cilia/flagella require the action of a large array of dynein microtubule motor complexes. Due to genetic, biochemical, and microscopic tractability, Chlamydomonas reinhardtii has become the premier model system in which to dissect the role of dyneins in flagellar assembly, motility, and signaling. Currently, 54 proteins have been described as components of various Chlamydomonas flagellar dyneins or as factors required for their assembly in the cytoplasm and/or transport into the flagellum; orthologs of nearly all these components are present in other ciliated organisms including humans.

View Article and Find Full Text PDF

I1 dynein, or dynein f, is a highly conserved inner arm isoform that plays a key role in the regulation of flagellar motility. To understand how the IC138 IC/LC subcomplex modulates I1 activity, we characterized the molecular lesions and motility phenotypes of several bop5 alleles. bop5-3, bop5-4, and bop5-5 are null alleles, whereas bop5-6 is an intron mutation that reduces IC138 expression.

View Article and Find Full Text PDF

The unicellular alga Chlamydomonas can assemble two 10 μm flagella in 1 h from proteins synthesized in the cell body. Targeting and transporting these proteins to the flagella are simplified by preassembly of macromolecular complexes in the cell body. Radial spokes are flagellar complexes that are partially assembled in the cell body before entering the flagella.

View Article and Find Full Text PDF

Analysis of Chlamydomonas axonemes revealed that the protein phosphatase, PP2A, is localized to the outer doublet microtubules and is implicated in regulation of dynein-driven motility. We tested the hypothesis that PP2A is localized to the axoneme by a specialized, highly conserved 55-kDa B-type subunit identified in the Chlamydomonas flagellar proteome. The B-subunit gene is defective in the motility mutant pf4.

View Article and Find Full Text PDF

Recent evidence has revealed that the dynein motors and highly conserved signaling proteins are localized within the ciliary 9+2 axoneme. One key mechanism for regulation of motility is phosphorylation. Here, we review diverse evidence, from multiple experimental organisms, that ciliary motility is regulated by phosphorylation/dephosphorylation of the dynein arms through kinases and phosphatases that are anchored immediately adjacent to their axonemal substrates.

View Article and Find Full Text PDF

The Chlamydomonas I1 dynein is a two-headed inner dynein arm important for the regulation of flagellar bending. Here we took advantage of mutant strains lacking either the 1α or 1β motor domain to distinguish the functional role of each motor domain. Single- particle electronic microscopic analysis confirmed that both the I1α and I1β complexes are single headed with similar ringlike, motor domain structures.

View Article and Find Full Text PDF