Epigenetic marks and associated traits can be transmitted for one or more generations, phenomena known respectively as inter- or transgenerational epigenetic inheritance. It remains unknown if genetically and conditionally induced aberrant epigenetic states can influence the development of the nervous system across generations. Here, we show, using as a model system, that alteration of H3K4me3 levels in the parental generation, caused by genetic manipulation or changes in parental conditions, has, respectively, trans- and intergenerational effects on H3K4 methylome, transcriptome, and nervous system development.
View Article and Find Full Text PDFGerm cells have evolved unique mechanisms to ensure the transmission of genetically and nongenetically encoded information, whose alteration compromises germ cell immortality. Chromatin factors play fundamental roles in these mechanisms. H3K36 and H3K27 methyltransferases shape and propagate a pattern of histone methylation essential for C.
View Article and Find Full Text PDFBackground: Evidence of global heterochromatin decay and aberrant gene expression in models of physiological and premature ageing have long supported the "heterochromatin loss theory of ageing", which proposes that ageing is aetiologically linked to, and accompanied by, a progressive, generalised loss of repressive epigenetic signatures. However, the remarkable plasticity of chromatin conformation suggests that the re-establishment of such marks could potentially revert the transcriptomic architecture of animal cells to a "younger" state, promoting longevity and healthspan. To expand our understanding of the ageing process and its connection to chromatin biology, we screened an RNAi library of chromatin-associated factors for increased longevity phenotypes.
View Article and Find Full Text PDFPost-translational histone modifications regulate chromatin compaction and gene expression to control many aspects of development. Mutations in genes encoding regulators of H3K4 methylation are causally associated with neurodevelopmental disorders characterized by intellectual disability and deficits in motor functions. However, it remains unclear how H3K4 methylation influences nervous system development and contributes to the aetiology of disease.
View Article and Find Full Text PDFPost-translational modifications of histones, constitutive components of chromatin, regulate chromatin compaction and control all DNA-based cellular processes. C. elegans JMJD-1.
View Article and Find Full Text PDFThe nematode Caenorhabditis elegans is widely used as a model organism to study cell and developmental biology. Quantitative proteomics of C. elegans is still in its infancy and, so far, most studies have been performed on adult worm samples.
View Article and Find Full Text PDFThe eukaryotic genome is organized in a three-dimensional structure called chromatin, constituted by DNA and associated proteins, the majority of which are histones. Post-translational modifications of histone proteins greatly influence chromatin structure and regulate many DNA-based biological processes. Methylation of lysine 36 of histone 3 (H3K36) is a post-translational modification functionally relevant during early steps of DNA damage repair.
View Article and Find Full Text PDFComponents of the KDM7 family of histone demethylases are implicated in neuronal development and one member, PHF8, is often found to be mutated in cases of X-linked mental retardation. However, how PHF8 regulates neurodevelopmental processes and contributes to the disease is still largely unknown. Here, we show that the catalytic activity of a PHF8 homolog in , JMJD-1.
View Article and Find Full Text PDFMethylation of histone 3 lysine 4 (H3K4) is largely associated with promoters and enhancers of actively transcribed genes and is finely regulated during development by the action of histone methyltransferases and demethylases. H3K4me3 demethylases of the KDM5 family have been previously implicated in development, but how the regulation of H3K4me3 level controls developmental processes is not fully established. Here, we show that the H3K4 demethylase RBR-2, the unique member of the KDM5 family in C.
View Article and Find Full Text PDFMethylation of histone H3 on lysine 9 (H3K9) is a hallmark of transcriptionally inactive heterochromatin that is deregulated in pathological conditions. A new study shows that complete loss of H3K9 methylation in Caenorhabditis elegans leads to derepression of repetitive elements and formation of DNA:RNA hybrids (R loops), resulting in increased rates of repeat-specific mutation.
View Article and Find Full Text PDFThe dynamic regulation of histone modifications is important for modulating transcriptional programs during development. Aberrant H3K4 methylation is associated with neurological disorders, but how the levels and the recognition of this modification affect specific neuronal processes is unclear. Here, we show that RBR-2, the sole homolog of the KDM5 family of H3K4me3/2 demethylases in Caenorhabditis elegans, ensures correct axon guidance by controlling the expression of the actin regulator wsp-1.
View Article and Find Full Text PDFWe applied a middle-down proteomics strategy for large-scale protein analysis during in vivo development of Caenorhabditis elegans. We characterized PTMs on histone H3 N-terminal tails at eight time points during the C. elegans lifecycle, including embryo, larval stages (L1-L4), dauer, and L1/L4 postdauer.
View Article and Find Full Text PDFGenome-wide analyses in Caenorhabditis elegans show that post-translational modifications (PTMs) of histones are evolutionary conserved and distributed along functionally distinct genomic domains. However, a global profile of PTMs and their co-occurrence on the same histone tail has not been described in this organism. We used mass spectrometry based middle-down proteomics to analyze histone H3 N-terminal tails from C.
View Article and Find Full Text PDFGlioblastoma (GBM)-derived tumorigenic stem-like cells (GSCs) may play a key role in therapy resistance. Previously, we reported that the mitotic kinase MELK binds and phosphorylates the oncogenic transcription factor FOXM1 in GSCs. Here, we demonstrate that the catalytic subunit of Polycomb repressive complex 2, EZH2, is targeted by the MELK-FOXM1 complex, which in turn promotes resistance to radiation in GSCs.
View Article and Find Full Text PDFWe recently analyzed the functional roles of UTX-1 during development. utx-1 is an essential gene required for the correct embryonic and post-embryonic development of C. elegans, and it displays an H3K27me3 demethylase activity.
View Article and Find Full Text PDFProtein interaction modules coordinate the connections within and the activity of intracellular signaling networks. The Eps15 Homology (EH) module, a protein-protein interaction domain that is a key feature of the EH-network, was originally identified in a few proteins involved in endocytosis and vesicle trafficking, and has subsequently also been implicated in actin reorganization, nuclear shuttling, and DNA repair. Here we report an extensive characterization of the physical connections and of the functional wirings of the EH-network in the nematode.
View Article and Find Full Text PDFEpigenetic modifications influence gene expression and provide a unique mechanism for fine-tuning cellular differentiation and development in multicellular organisms. Here we report on the biological functions of UTX-1, the Caenorhabditis elegans homologue of mammalian UTX, a histone demethylase specific for H3K27me2/3. We demonstrate that utx-1 is an essential gene that is required for correct embryonic and postembryonic development.
View Article and Find Full Text PDFIncreasing evidence indicates that cellular uptake of several molecules can occur independently of functional dynamin, but the molecular players that regulate dynamin-independent endocytosis and the subsequent trafficking steps are still largely unknown. A survival-based short-hairpin (sh) RNA screen using a cell line expressing a diphtheria toxin receptor (DTR, officially known as HBEGF) anchored to GPI (DTR-GPI), which internalizes diphtheria toxin (DT, officially known as DTX) in a dynamin-independent manner, identified PI3KC2α, a class II phosphoinositide 3-kinase (PI3K), as a specific regulator of dynamin-independent DT internalization. We found that the internalization of several proteins that enter the cell through dynamin-independent pathways led to a relocalization of PI3KC2α to cargo-positive vesicles.
View Article and Find Full Text PDFX-linked mental retardation (XLMR) is an inherited disorder that mostly affects males and is caused by mutations in genes located on the X chromosome. Here, we show that the XLMR protein PHF8 and a C. elegans homolog F29B9.
View Article and Find Full Text PDFIntersectin is a multifunctional protein that interacts with components of the endocytic and exocytic pathways, and it is also involved in the control of actin dynamics. Drosophila intersectin is required for viability, synaptic development, and synaptic vesicle recycling. Here, we report the characterization of intersectin function in Caenorhabditis elegans.
View Article and Find Full Text PDFThe trithorax and the polycomb group proteins are chromatin modifiers, which play a key role in the epigenetic regulation of development, differentiation and maintenance of cell fates. The polycomb repressive complex 2 (PRC2) mediates transcriptional repression by catalysing the di- and tri-methylation of Lys 27 on histone H3 (H3K27me2/me3). Owing to the essential role of the PRC2 complex in repressing a large number of genes involved in somatic processes, the H3K27me3 mark is associated with the unique epigenetic state of stem cells.
View Article and Find Full Text PDFMethylation of histones has been regarded as a stable modification defining the epigenetic program of the cell, which regulates chromatin structure and transcription. However, the recent discovery of histone demethylases has challenged the stable nature of histone methylation. Here we demonstrate that the JARID1 proteins RBP2, PLU1, and SMCX are histone demethylases specific for di- and trimethylated histone 3 lysine 4 (H3K4).
View Article and Find Full Text PDFDifferent plasma membrane receptors are internalized through saturable/noncompetitive pathways, suggesting cargo-specific regulation. Here, we report that TTP (SH3BP4), a SH3-containing protein, specifically regulates the internalization of the transferrin receptor (TfR). TTP interacts with endocytic proteins, including clathrin, dynamin, and the TfR, and localizes selectively to TfR-containing coated-pits (CCP) and -vesicles (CCV).
View Article and Find Full Text PDFExogenously and endogenously originated signals are propagated within the cell by functional and physical networks of proteins, leading to numerous biological outcomes. Many protein-protein interactions take place between binding domains and short peptide motifs. Frequently, these interactions are inducible by upstream signaling events, in which case one of the two binding surfaces may be created by a posttranslational modification.
View Article and Find Full Text PDF