Publications by authors named "Salar Tayebi"

Background: Intra-abdominal pressure (IAP) is a critical parameter in the care of critically ill patients, as elevated IAP can lead to reduced cardiac output and organ perfusion, potentially resulting in multiple organ dysfunction and failure. The current gold standard for measuring IAP is an indirect technique via the bladder. According to the Abdominal Compartment Society's Guidelines, new measurement methods/devices for IAP must be validated against the gold standard.

View Article and Find Full Text PDF

: Intra-abdominal pressure (IAP) monitoring is crucial for the detection and prevention of intra-abdominal hypertension (IAH) and abdominal compartment syndrome (ACS). In the 1970s, air-filled catheters (AFCs) for urodynamic studies were introduced as a solution to overcome the limitations of water-perfused catheters. Recent studies have shown that for correct IAP measurement with traditional AFC, the bladder needs to be primed with 25 mL of saline solution to allow pressure wave transmission to the transducer outside of the body, which limits continuous IAP monitoring.

View Article and Find Full Text PDF

Intra-abdominal pressure (IAP) has been recognized as an important vital sign in critically ill patients. Due to the high prevalence and incidence of intra-abdominal hypertension in surgical (trauma, burns, cardiac) and medical (sepsis, liver cirrhosis, acute kidney injury) patients, continuous IAP (CIAP) monitoring has been proposed. This research was aimed at validating a new CIAP monitoring device, the TraumaGuard from Sentinel Medical Technologies, against the gold standard (height of a water column) in an in vitro setting and performing a comparative analysis among different CIAP measurement technologies (including two intra-gastric and two intra-bladder measurement devices).

View Article and Find Full Text PDF

Increased intra-abdominal pressure (IAP) is an important vital sign in critically ill patients and has a negative impact on morbidity and mortality. This study aimed to validate a novel non-invasive ultrasonographic approach to IAP measurement against the gold standard intra-bladder pressure (IBP) method. We conducted a prospective observational study in an adult medical ICU of a university hospital.

View Article and Find Full Text PDF
Article Synopsis
  • The review investigates the link between fluid administration and intra-abdominal pressure (IAP) in patients at risk of intra-abdominal hypertension (IAH) and abdominal compartment syndrome (ACS).
  • A comprehensive literature search uncovered various studies indicating that fluid resuscitation often exacerbates IAH, creating a cyclical problem where patients require even more fluids for management.
  • While the timing and strategy for fluid management are critical, there is a lack of clear guidelines, and in severe cases, surgical intervention may be necessary to prevent serious complications.
View Article and Find Full Text PDF

Increased intra-abdominal pressure (IAP) has an important impact on morbidity and mortality in critically ill patients. The SERENNO Sentinel system (Serenno Medical, Yokne'am Illit, Israel) is a novel device that allows automatic and continuous IAP measurements. Pre-clinical validation in a bench model study comparing the new device with the gold standard method and two other continuous IAP measurement devices.

View Article and Find Full Text PDF

Rubber is one of the most used materials in the world; however, raw rubber shows a relatively very low mechanical strength. Therefore, it needs to be cured before its ultimate applicatios. Curing process specifications, such as the curing time and temperature, influence the material properties of the final cured product.

View Article and Find Full Text PDF

Intra-abdominal hypertension, defined as an intra-abdominal pressure (IAP) equal to or above 12 mmHg is one of the major risk-factors for increased morbidity (organ failure) and mortality in critically ill patients. Therefore, IAP monitoring is highly recommended in intensive care unit (ICU) patients to predict development of abdominal compartment syndrome and to provide a better care for patients hospitalized in the ICU. The IAP measurement through the bladder is the actual reference standard advocated by the abdominal compartment society; however, this measurement technique is cumbersome, non-continuous, and carries a potential risk for urinary tract infections and urethral injury.

View Article and Find Full Text PDF

This review presents an overview of previously reported non-invasive intra-abdominal pressure (IAP) measurement techniques. Each section covers the basic physical principles and methodology of the various measurement techniques, the experimental results, and the advantages and disadvantages of each method. The most promising non-invasive methods for IAP measurement are microwave reflectometry and ultrasound assessment, in combination with an applied external force.

View Article and Find Full Text PDF

Transient Radar Method (TRM) was recently proposed as a novel contact-free method for the characterization of multilayer dielectric structures including the geometric details. In this paper, we discuss and quantify the intrinsic and systematic errors of TRM. Also, solutions for mitigating these problems are elaborated extensively.

View Article and Find Full Text PDF