Loneliness is linked to wide ranging physical and mental health problems, including increased rates of mortality. Understanding how loneliness manifests is important for targeted public health treatment and intervention. With advances in mobile sending and wearable technologies, it is possible to collect data on human phenomena in a continuous and uninterrupted way.
View Article and Find Full Text PDFBackground: Affective states are important aspects of healthy functioning; as such, monitoring and understanding affect is necessary for the assessment and treatment of mood-based disorders. Recent advancements in wearable technologies have increased the use of such tools in detecting and accurately estimating mental states (eg, affect, mood, and stress), offering comprehensive and continuous monitoring of individuals over time.
Objective: Previous attempts to model an individual's mental state relied on subjective measurements or the inclusion of only a few objective monitoring modalities (eg, smartphones).
Current digital mental healthcare solutions conventionally take on a reactive approach, requiring individuals to self-monitor and document existing symptoms. These solutions are unable to provide comprehensive, wrap-around, customized treatments that capture an individual's holistic mental health model as it unfolds over time. Recognizing that each individual requires personally tailored mental health treatment, we introduce the notion of Personalized Mental Health Navigation (MHN): a cybernetic goal-based system that deploys a continuous loop of monitoring, estimation, and guidance to steer the individual towards mental flourishing.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2022
Electrocardiogram (ECG) signals provide rich information on individuals' potential cardiovascular conditions and disease, ranging from coronary artery disease to the risk of a heart attack. While health providers store and share these information for medical and research purposes, such data is highly vulnerable to privacy concerns, similar to many other types of healthcare data. Recent works have shown the feasibility of identifying and authenticating individuals by using ECG as a biometric due to the highly individualized nature of ECG signals.
View Article and Find Full Text PDFBackground: Sleep disturbance is a transdiagnostic risk factor that is so prevalent among young adults that it is considered a public health epidemic, which has been exacerbated by the COVID-19 pandemic. Sleep may contribute to mental health via affect dynamics. Prior literature on the contribution of sleep to affect is largely based on correlational studies or experiments that do not generalize to the daily lives of young adults.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
Traumatic Brain Injury (TBI) is a highly prevalent and serious public health concern. Most cases of TBI are mild in nature, yet some individuals may develop following-up persistent disability. The pathophysiologic causes for those with persistent postconcussive symptoms are most likely multifactorial and the underlying mechanism is not well understood, although it is clear that sleep disturbances feature prominently in those with persistent disability.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2020
Traumatic Brain Injury (TBI) is highly prevalent, affecting ~1% of the U.S. population, with lifetime economic costs estimated to be over $75 billion.
View Article and Find Full Text PDFDue to the difficulties and complications in the quantitative assessment of traumatic brain injury (TBI) and its increasing relevance in today's world, robust detection of TBI has become more significant than ever. In this work, we investigate several machine learning approaches to assess their performance in classifying electroencephalogram (EEG) data of TBI in a mouse model. Algorithms such as decision trees (DT), random forest (RF), neural network (NN), support vector machine (SVM), K-nearest neighbors (KNN) and convolutional neural network (CNN) were analyzed based on their performance to classify mild TBI (mTBI) data from those of the control group in wake stages for different epoch lengths.
View Article and Find Full Text PDF