Biomech Model Mechanobiol
June 2024
In orthopedic and dental surgery, the implantation of biomaterials within the bone to restore the integrity of the treated organ has become a standard procedure. Their long-term stability relies on the osseointegration phenomena, where bone grows onto and around metallic implants, creating a bone-implant interface. Bone is a highly hierarchical material that evolves spatially and temporally during this healing phase.
View Article and Find Full Text PDFMulti-material additive manufacturing is receiving increasing attention in the field of acoustics, in particular towards the design of micro-architectured periodic media used to achieve programmable ultrasonic responses. To unravel the effect of the material properties and spatial arrangement of the printed constituents, there is an unmet need in developing wave propagation models for prediction and optimization purposes. In this study, we propose to investigate the transmission of longitudinal ultrasound waves through 1D-periodic biphasic media, whose constituent materials are viscoelastic.
View Article and Find Full Text PDFPhotopolymer-based additive manufacturing has received increasing attention in the field of acoustics over the past decade, specifically towards the design of tissue-mimicking phantoms and passive components for ultrasound imaging and therapy. While these applications rely on an accurate characterization of the longitudinal bulk properties of the materials, emerging applications involving periodic micro-architectured media also require the knowledge of the transverse bulk properties to achieve the desired acoustic behavior. However, a robust knowledge of these properties is still lacking for such attenuating materials.
View Article and Find Full Text PDFFunctional grading is a distinctive feature adopted by nature to improve the transition between tissues that present a strong mismatch in mechanical properties, a relevant example being the tendon-to-bone attachment. Recent progress in multi-material additive manufacturing now allows for the design and fabrication of bioinspired functionally graded soft-to-hard composites. Nevertheless, this emerging technology depends on several design variables, including both material and mechanistic ingredients, that are likely to affect the mechanical performance of such composites.
View Article and Find Full Text PDFBiomech Model Mechanobiol
October 2020
Ultrasound stimulation is thought to influence bone remodelling process. But recently, the efficiency of ultrasound therapy for bone healing has been questioned. Despite an extensive literature describing the positive effect of ultrasound on bone regeneration-cell cultures, animal models, clinical studies-there are more and more reviews denouncing the inefficiency of clinical devices based on low-intensity pulsed ultrasound stimulation (LIPUS) of the bone healing.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
September 2017
Although the biomechanical behavior of the acetabular cup (AC) implant is determinant for the surgical success, it remains difficult to be assessed due to the multiscale and anisotropic nature of bone tissue. The aim of the present study was to investigate the influence of the anisotropic properties of peri-implant trabecular bone tissue on the biomechanical behavior of the AC implant at the macroscopic scale. Thirteen bovine trabecular bone samples were imaged using micro-computed tomography (μCT) with a resolution of 18 μm.
View Article and Find Full Text PDFWe present a semi-analytical finite element (SAFE) scheme for accurately computing the velocity dispersion and attenuation in a trilayered system consisting of a transversely-isotropic (TI) cortical bone plate sandwiched between the soft tissue and marrow layers. The soft tissue and marrow are mimicked by two fluid layers of finite thickness. A Kelvin-Voigt model accounts for the absorption of all three biological domains.
View Article and Find Full Text PDFReliability of multiscale models of bone is related to the accuracy of the experimental information available on bone microstructure. X-ray-based imaging techniques allow to inspect bone structure and mineralization in vitro at the micrometre scale. However, spatial resolution achievable in vivo is much coarser and can produce blurry, uncertain information on bone microstructure.
View Article and Find Full Text PDFDegenerative discopathy is a common pathology that may require spine surgery. A metallic cylindrical pin is inserted into the vertebral body to maintain soft tissues and may be used as a reflector of ultrasonic wave to estimate bone density. The first aim of this paper is to validate a three-dimensional (3-D) model to simulate the ultrasonic propagation in a trabecular bone sample in which a metallic pin has been inserted.
View Article and Find Full Text PDFPress-fit surgical procedures aim at providing primary stability to acetabular cup (AC) implants. Impact analysis constitutes a powerful approach to retrieve the AC implant insertion properties. The aim of this numerical study was to investigate the dynamic interaction occurring between the hammer, the ancillary and bone tissue during the impact and to assess the potential of impact analysis to retrieve AC implant insertion conditions.
View Article and Find Full Text PDFDental implant stability is an important determinant of the surgical success. Quantitative ultrasound (QUS) techniques can be used to assess such properties using the implant acting as a waveguide. However, the interaction between an ultrasonic wave and the implant remains poorly understood.
View Article and Find Full Text PDFAccurate and reliable assessment of bone quality requires predictive methods which could probe bone microstructure and provide information on bone mechanical properties. Multiscale modelling and simulation represent a fast and powerful way to predict bone mechanical properties based on experimental information on bone microstructure as obtained through X-ray-based methods. However, technical limitations of experimental devices used to inspect bone microstructure may produce blurry data, especially in in vivo conditions.
View Article and Find Full Text PDFThe aim of this work is to evaluate the effects of the heterogeneity and anisotropy of material properties of cortical bone on its ultrasonic response obtained by using axial transmission method. The heterogeneity and anisotropy of material properties are introduced by using a parametric probabilistic model. The geometrical configuration of the tested sample is described by a tri-layer medium composed of a heterogeneous and anisotropic solid layer sandwiched between two acoustic fluid layers of which one of these layers is excited by an acoustic linear source.
View Article and Find Full Text PDFDental implant stability, which is an important parameter for the surgical outcome, can now be assessed using quantitative ultrasound. However, the acoustical propagation in dental implants remains poorly understood. The objective of this numerical study was to understand the propagation phenomena of ultrasonic waves in cylindrically shaped prototype dental implants and to investigate the sensitivity of the ultrasonic response to the surrounding bone quantity and quality.
View Article and Find Full Text PDFDental implants are now widely used for the replacement of missing teeth in fully or partially edentulous patients and for cranial reconstructions. However, risks of failure, which may have dramatic consequences, are still experienced and remain difficult to anticipate. The stability of biomaterials inserted in bone tissue depends on multiscale phenomena of biomechanical (bone-implant interlocking) and of biological (mechanotransduction) natures.
View Article and Find Full Text PDFCanalicular fluid flow is acknowledged to play a major role in bone functioning, allowing bone cells' metabolism and activity and providing an efficient way for cell-to-cell communication. Bone canaliculi are small canals running through the bone solid matrix, hosting osteocyte's dendrites, and saturated by an interstitial fluid rich in ions. Because of the small size of these canals (few hundred nanometers in diameter), fluid flow is coupled with electrochemical phenomena.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
August 2012
This paper deals with the modeling of guided waves propagation in in vivo cortical long bone, which is known to be anisotropic medium with functionally graded porosity. The bone is modeled as an anisotropic poroelastic material by using Biot's theory formulated in high frequency domain. A hybrid spectral/finite element formulation has been developed to find the time-domain solution of ultrasonic waves propagating in a poroelastic plate immersed in two fluid halfspaces.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
May 2014
This work deals with the ultrasonic wave propagation in the cortical layer of long bones which is known as being a functionally graded anisotropic material coupled with fluids. The viscous effects are taken into account. The geometrical configuration mimics the one of axial transmission technique used for evaluating the bone quality.
View Article and Find Full Text PDFAccording to the core activity of calcium in the bone cellular expression, a new hypothesis linking calcium transport with the mechanical loading is proposed to explain the mechano-adaptation of bone tissue. Due to the piezoelectric coupling, the tensile and compressive areas of bone produce different electrical environments for the osteocytic cells that are embedded in the lacuno-canalicular porosity. This electrical asymmetry engenders a calcium enrichment-exclusion effect that strongly changes the calcium concentration in the lacuno-canalicular fluid and thus modifies the remodelling process.
View Article and Find Full Text PDFCortical bone is a viscoelastic heterogeneous medium which may be assessed with axial transmission. This work aims at evaluating the average depth investigated by the lateral wave for radial variations of material properties in relatively thick cortical bone. The equivalent contributing depth (ECD) is derived from the finite element simulation results for spatial variations of a viscoelastic coefficient (η(11)) and of porosity.
View Article and Find Full Text PDFBiomech Model Mechanobiol
December 2011
It is well known that microcracks act as a stimulus for bone remodelling, initiating resorption by osteoclasts and new bone formation by osteoblasts. Moreover, microcracks are likely to alter the fluid flow and convective transport through the bone tissue. This paper proposes a quantitative evaluation of the strain-induced interstitial fluid velocities developing in osteons in presence of a microcrack in the interstitial bone tissue.
View Article and Find Full Text PDFCortical bone and the surrounding soft tissues are attenuating and heterogeneous media, which might affect the signals measured with axial transmission devices. This work aims at evaluating the effect of the heterogeneous acoustic absorption in bone and in soft tissues on the bone ultrasonic response. Therefore, a two-dimensional finite element time-domain method is derived to model transient wave propagation in a three-layer medium composed of an inhomogeneous transverse isotropic viscoelastic solid layer, sandwiched between two viscous fluid layers.
View Article and Find Full Text PDFNon-destructive evaluation of heterogeneous materials is of major interest not only in industrial but also in biomedical fields. In this work, the studied structure is a three-layered one: A laterally heterogeneous anisotropic solid layer is sandwiched between two acoustic fluids. An original method is proposed to solve the wave equation in such a structure without using a multilayered model for the plate.
View Article and Find Full Text PDFBone fluid flow and its induced effects on the bone cells are important players in triggering and signalling bone formation and bone remodelling. This study aims to numerically investigate the behaviour of interstitial fluid flows in cortical bone under axial cyclic harmonic loads that mimics in vivo bone behaviour during daily activities like walking. Here, bone tissue is modelled as a fluid-saturated anisotropic poroelastic medium which consists of a periodic group of osteons.
View Article and Find Full Text PDFAn Acad Bras Cienc
March 2010
In this study, a multiphysical description of fluid transport through osteo-articular porous media is presented. Adapted from the model of Moyne and Murad, which is intended to describe clayey materials behaviour, this multiscale modelling allows for the derivation of the macroscopic response of the tissue from microscopical information. First the model is described.
View Article and Find Full Text PDF